Unverified Commit 6805d543 by Samuel Committed by GitHub

[PYTORCH]Reduce_ops support added (#5308)

* [PYTORCH]Reduce_ops support added

* Review comments updated

* typo bug in qnn test
parent 0145cd50
......@@ -934,7 +934,50 @@ def _dropout():
def _reduce(name):
def _impl(inputs, input_types):
data = inputs[0]
return get_relay_op(name)(data)
axis = None
keepdims = False
if len(inputs) > 2: # default, torch have only data, axis=None, keepdims=False
if isinstance(inputs[1], int):
axis = int(inputs[1])
else:
axis = list(_infer_shape(inputs[1]))
keepdims = bool(inputs[2])
return get_relay_op(name)(data, axis=axis, keepdims=keepdims)
return _impl
def _std():
def _impl(inputs, input_types):
data = inputs[0]
axis = list(_infer_shape(inputs[1]))
keepdims = bool(inputs[3])
unbiased = bool(inputs[2])
if unbiased:
msg = "Currently only supports standard-deviation calculated via the biased "\
"estimator. Pytorch's Bessel's correction is not supported."
raise NotImplementedError(msg)
return _op.reduce.std(data, axis=axis, keepdims=keepdims)
return _impl
def _variance():
def _impl(inputs, input_types):
data = inputs[0]
axis = list(_infer_shape(inputs[1]))
keepdims = bool(inputs[3])
unbiased = bool(inputs[2])
if unbiased:
msg = "Currently only supports standard-deviation calculated via the biased "\
"estimator. Pytorch's Bessel's correction is not supported."
raise NotImplementedError(msg)
return _op.reduce.variance(data, axis=axis, keepdims=keepdims)
return _impl
def _mean():
......@@ -1381,6 +1424,10 @@ def _get_convert_map(prelude):
"aten::permute" : _transpose(prelude),
"aten::sum" : _reduce("sum"),
"aten::prod" : _reduce("prod"),
"aten::argmin" : _reduce("argmin"),
"aten::argmax" : _reduce("argmax"),
"aten::std" : _std(),
"aten::var" : _variance(),
"aten::sqrt" : _sqrt(),
'aten::floor' : _floor(),
"aten::detach" : _identity(),
......
......@@ -396,7 +396,7 @@ def test_quantized_imagenet():
mean_abs_diff = np.mean(np.abs(tvm_result - pt_result))
num_identical = np.sum(tvm_result == pt_result)
pt_top3_labels = np.argsort(pt_result)[::-1][:3]
tvm_top3_labels = np.argsort(pt_result)[::-1][:3]
tvm_top3_labels = np.argsort(tvm_result)[::-1][:3]
print("\nModel name: %s" % model_name)
print("PyTorch top3 label:", pt_top3_labels)
......
......@@ -1279,6 +1279,168 @@ def test_simple_rnn():
verify_script_model(RNNLoop().eval(), [(10, 10, 4)])
def test_forward_reduce_sum():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
class ReduceSum1(Module):
def forward(self, *args):
return args[0].sum(1)
class ReduceSum2(Module):
def forward(self, *args):
return args[0].sum(dim=1, keepdim=False)
class ReduceSum3(Module):
def forward(self, *args):
return args[0].sum(dim=2, keepdim=True)
class ReduceSum4(Module):
def forward(self, *args):
return args[0].sum(dim=(2,3), keepdim=True)
class ReduceSum5(Module):
def forward(self, *args):
return args[0].sum(dim=(2,3), keepdim=False)
input_data = torch.rand(input_shape).float()
verify_model(ReduceSum1().float().eval(), input_data=input_data)
verify_model(ReduceSum2().float().eval(), input_data=input_data)
verify_model(ReduceSum3().float().eval(), input_data=input_data)
verify_model(ReduceSum4().float().eval(), input_data=input_data)
verify_model(ReduceSum5().float().eval(), input_data=input_data)
def test_forward_reduce_prod():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
class ReduceProd1(Module):
def forward(self, *args):
return args[0].prod(1)
class ReduceProd2(Module):
def forward(self, *args):
return args[0].prod(dim=1, keepdim=False)
class ReduceProd3(Module):
def forward(self, *args):
return args[0].prod(dim=2, keepdim=True)
input_data = torch.rand(input_shape).float()
verify_model(ReduceProd1().float().eval(), input_data=input_data)
verify_model(ReduceProd2().float().eval(), input_data=input_data)
verify_model(ReduceProd3().float().eval(), input_data=input_data)
def test_forward_argmin():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
class ArgMin1(Module):
def forward(self, *args):
return args[0].argmin(1)
class ArgMin2(Module):
def forward(self, *args):
return args[0].argmin(dim=1, keepdim=False)
class ArgMin3(Module):
def forward(self, *args):
return args[0].argmin(dim=2, keepdim=True)
input_data = torch.rand(input_shape).float()
verify_model(ArgMin1().float().eval(), input_data=input_data)
verify_model(ArgMin2().float().eval(), input_data=input_data)
verify_model(ArgMin3().float().eval(), input_data=input_data)
def test_forward_argmax():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
class ArgMax1(Module):
def forward(self, *args):
return args[0].argmax(1)
class ArgMax2(Module):
def forward(self, *args):
return args[0].argmax(dim=1, keepdim=False)
class ArgMax3(Module):
def forward(self, *args):
return args[0].argmax(dim=2, keepdim=True)
input_data = torch.rand(input_shape).float()
verify_model(ArgMax1().float().eval(), input_data=input_data)
verify_model(ArgMax2().float().eval(), input_data=input_data)
verify_model(ArgMax3().float().eval(), input_data=input_data)
def test_forward_std():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
class Std1(Module):
def forward(self, *args):
return args[0].std(1, unbiased=False)
class Std2(Module):
def forward(self, *args):
return args[0].std(dim=1, keepdim=False, unbiased=False)
class Std3(Module):
def forward(self, *args):
return args[0].std(dim=2, keepdim=True, unbiased=False)
class Std4(Module):
def forward(self, *args):
return args[0].std(dim=(2,3), keepdim=True, unbiased=False)
class Std5(Module):
def forward(self, *args):
return args[0].std(dim=(2,3), keepdim=False, unbiased=False)
input_data = torch.rand(input_shape).float()
verify_model(Std1().float().eval(), input_data=input_data)
verify_model(Std2().float().eval(), input_data=input_data)
verify_model(Std3().float().eval(), input_data=input_data)
verify_model(Std4().float().eval(), input_data=input_data)
verify_model(Std5().float().eval(), input_data=input_data)
def test_forward_variance():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
class Variance1(Module):
def forward(self, *args):
return args[0].var(1, unbiased=False)
class Variance2(Module):
def forward(self, *args):
return args[0].var(dim=1, keepdim=False, unbiased=False)
class Variance3(Module):
def forward(self, *args):
return args[0].var(dim=2, keepdim=True, unbiased=False)
class Variance4(Module):
def forward(self, *args):
return args[0].var(dim=(2,3), keepdim=True, unbiased=False)
class Variance5(Module):
def forward(self, *args):
return args[0].var(dim=(2,3), keepdim=False, unbiased=False)
input_data = torch.rand(input_shape).float()
verify_model(Variance1().float().eval(), input_data=input_data)
verify_model(Variance2().float().eval(), input_data=input_data)
verify_model(Variance3().float().eval(), input_data=input_data)
verify_model(Variance4().float().eval(), input_data=input_data)
verify_model(Variance5().float().eval(), input_data=input_data)
if __name__ == "__main__":
# Single operator tests
test_forward_add()
......@@ -1291,6 +1453,12 @@ if __name__ == "__main__":
test_forward_squeeze()
test_forward_unsqueeze()
test_forward_concatenate()
test_forward_reduce_sum()
test_forward_reduce_prod()
test_forward_argmin()
test_forward_argmax()
test_forward_std()
test_forward_variance()
test_forward_relu()
test_forward_prelu()
test_forward_leakyrelu()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment