Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
6292c781
Commit
6292c781
authored
Sep 22, 2018
by
Siju
Committed by
Tianqi Chen
Sep 22, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM]Keras SimpleRnn and GRU support (#1729)
parent
7c3ec7df
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
145 additions
and
7 deletions
+145
-7
nnvm/python/nnvm/frontend/keras.py
+91
-7
nnvm/tests/python/frontend/keras/test_forward.py
+54
-0
No files found.
nnvm/python/nnvm/frontend/keras.py
View file @
6292c781
...
...
@@ -28,6 +28,10 @@ def _get_elu(insym, alpha):
"""
return
-
alpha
*
_sym
.
relu
(
1
-
_sym
.
exp
(
insym
))
+
_sym
.
relu
(
insym
)
def
_convert_recurrent_activation
(
insym
,
keras_layer
):
act_type
=
keras_layer
.
recurrent_activation
.
__name__
return
_convert_activation
(
insym
,
act_type
,
None
)
def
_convert_activation
(
insym
,
keras_layer
,
_
):
if
isinstance
(
keras_layer
,
str
):
act_type
=
keras_layer
...
...
@@ -420,16 +424,96 @@ def _convert_lstm(insym, keras_layer, symtab):
ixh2
=
_sym
.
dense
(
in_state_h
,
recurrent_wt
,
in_bias
,
use_bias
=
True
,
units
=
units
)
gate
=
ixh1
+
ixh2
gates
=
_sym
.
split
(
gate
,
indices_or_sections
=
4
,
axis
=
1
)
in_gate
=
_
sym
.
sigmoid
(
gates
[
0
]
)
in_transform
=
_
sym
.
sigmoid
(
gates
[
1
]
)
next_c
=
in_transform
*
in_state_c
+
in_gate
*
_
sym
.
tanh
(
gates
[
2
]
)
out_gate
=
_
sym
.
sigmoid
(
gates
[
3
]
)
next_h
=
out_gate
*
_
sym
.
tanh
(
next_c
)
in_gate
=
_
convert_recurrent_activation
(
gates
[
0
],
keras_layer
)
in_transform
=
_
convert_recurrent_activation
(
gates
[
1
],
keras_layer
)
next_c
=
in_transform
*
in_state_c
+
in_gate
*
_
convert_activation
(
gates
[
2
],
keras_layer
,
None
)
out_gate
=
_
convert_recurrent_activation
(
gates
[
3
],
keras_layer
)
next_h
=
out_gate
*
_
convert_activation
(
next_c
,
keras_layer
,
None
)
out_shape
=
tuple
(
dim
if
dim
else
1
for
dim
in
_as_list
(
keras_layer
.
output_shape
)[
0
])
out
=
_sym
.
reshape
(
next_h
,
shape
=
out_shape
)
return
[
out
,
next_h
,
next_c
]
def
_convert_simple_rnn
(
insym
,
keras_layer
,
symtab
):
_check_data_format
(
keras_layer
)
if
not
isinstance
(
insym
,
list
):
buffer
=
np
.
zeros
((
1
,
keras_layer
.
units
),
'float32'
)
prev_sym
=
symtab
.
new_const
(
buffer
)
insym
=
[
insym
,
prev_sym
]
in_data
=
insym
[
0
]
prev_sym
=
insym
[
1
]
weightList
=
keras_layer
.
get_weights
()
kernel_wt
=
symtab
.
new_const
(
weightList
[
0
]
.
transpose
([
1
,
0
]))
recurrent_wt
=
symtab
.
new_const
(
weightList
[
1
]
.
transpose
([
1
,
0
]))
in_bias
=
symtab
.
new_const
(
weightList
[
2
])
units
=
list
(
weightList
[
0
]
.
shape
)[
1
]
in_data
=
_sym
.
flatten
(
in_data
)
ixh
=
_sym
.
dense
(
in_data
,
kernel_wt
,
in_bias
,
use_bias
=
True
,
units
=
units
)
prev_sym
=
_sym
.
flatten
(
prev_sym
)
ixh2
=
_sym
.
dense
(
prev_sym
,
recurrent_wt
,
use_bias
=
False
,
units
=
units
)
output
=
ixh
+
ixh2
output
=
_convert_activation
(
output
,
keras_layer
,
None
)
out_shape
=
tuple
(
dim
if
dim
else
1
for
dim
in
_as_list
(
keras_layer
.
output_shape
)[
0
])
output
=
_sym
.
reshape
(
output
,
shape
=
out_shape
)
return
[
output
,
output
]
def
_convert_gru
(
insym
,
keras_layer
,
symtab
):
_check_data_format
(
keras_layer
)
if
not
isinstance
(
insym
,
list
):
buffer
=
np
.
zeros
((
1
,
keras_layer
.
units
),
'float32'
)
h_tm1
=
symtab
.
new_const
(
buffer
)
insym
=
[
insym
,
h_tm1
]
in_data
=
insym
[
0
]
h_tm1_sym
=
insym
[
1
]
weightList
=
keras_layer
.
get_weights
()
kernel_wt
=
symtab
.
new_const
(
weightList
[
0
]
.
transpose
([
1
,
0
]))
recurrent_wt
=
symtab
.
new_const
(
weightList
[
1
]
.
transpose
([
1
,
0
]))
in_bias
=
symtab
.
new_const
(
weightList
[
2
])
units
=
list
(
weightList
[
0
]
.
shape
)[
1
]
in_data
=
_sym
.
flatten
(
in_data
)
matrix_x
=
_sym
.
dense
(
in_data
,
kernel_wt
,
in_bias
,
use_bias
=
True
,
units
=
units
)
# inputs projected by all gate matrices at once
split_indices
=
[
keras_layer
.
units
,
2
*
keras_layer
.
units
]
gates
=
_sym
.
split
(
matrix_x
,
indices_or_sections
=
split_indices
,
axis
=
1
)
x_z
=
gates
[
0
]
x_r
=
gates
[
1
]
x_h
=
gates
[
2
]
# hidden state projected separately for update/reset and new
units
=
2
*
keras_layer
.
units
split_indices
=
[
units
]
rec_wts
=
_sym
.
split
(
recurrent_wt
,
indices_or_sections
=
split_indices
,
axis
=
0
)
h_tm1_sym
=
_sym
.
flatten
(
h_tm1_sym
)
matrix_inner
=
_sym
.
dense
(
h_tm1_sym
,
rec_wts
[
0
],
use_bias
=
False
,
units
=
units
)
split_indices
=
[
keras_layer
.
units
]
recurrent
=
_sym
.
split
(
matrix_inner
,
indices_or_sections
=
split_indices
,
axis
=
1
)
recurrent_z
=
recurrent
[
0
]
recurrent_r
=
recurrent
[
1
]
rec_act_z
=
_convert_recurrent_activation
(
x_z
+
recurrent_z
,
keras_layer
)
rec_act_r
=
_convert_recurrent_activation
(
x_r
+
recurrent_r
,
keras_layer
)
units
=
keras_layer
.
units
recurrent_h
=
_sym
.
dense
(
rec_act_r
*
h_tm1_sym
,
rec_wts
[
1
],
use_bias
=
False
,
units
=
units
)
act_hh
=
_convert_activation
(
x_h
+
recurrent_h
,
keras_layer
,
None
)
# previous and candidate state mixed by update gate
output
=
rec_act_z
*
h_tm1_sym
+
(
1
-
rec_act_z
)
*
act_hh
out_shape
=
tuple
(
dim
if
dim
else
1
for
dim
in
_as_list
(
keras_layer
.
output_shape
)[
0
])
output
=
_sym
.
reshape
(
output
,
shape
=
out_shape
)
return
[
output
,
output
]
def
_default_skip
(
insym
,
keras_layer
,
_
):
# pylint: disable=unused-argument
"""Layers that can be skipped because they are train time only."""
return
insym
...
...
@@ -475,9 +559,9 @@ _convert_map = {
# 'UpSampling3D' : _convert_upsample,
# 'Conv1D' : _convert_convolution1d,
# 'GRU' : _convert_gru
,
'SimpleRNN'
:
_convert_simple_rnn
,
'LSTM'
:
_convert_lstm
,
# 'SimpleRNN' : _convert_simple_rnn
,
'GRU'
:
_convert_gru
,
# 'Bidirectional' : _convert_bidirectional,
# 'TimeDistributed' : _default_skip,
...
...
nnvm/tests/python/frontend/keras/test_forward.py
View file @
6292c781
...
...
@@ -254,6 +254,58 @@ def test_forward_LSTM():
_test_LSTM
(
4
,
4
,
return_state
=
False
)
_test_LSTM_MultiLayer
(
4
,
4
)
def
_test_RNN
(
inputs
,
units
):
data
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
rnn_out
=
keras
.
layers
.
SimpleRNN
(
units
,
return_state
=
True
,
activation
=
'tanh'
)
x
=
rnn_out
(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
_test_RNN_MultiLayer
(
inputs
,
units
):
inputs
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
layer
=
keras
.
layers
.
SimpleRNN
(
units
,
return_state
=
True
,
return_sequences
=
True
,
activation
=
'tanh'
)
outputs
=
layer
(
inputs
)
output
,
state
=
outputs
[
0
],
outputs
[
1
:]
output
=
keras
.
layers
.
SimpleRNN
(
units
,
activation
=
'tanh'
)(
output
,
initial_state
=
state
)
keras_model
=
keras
.
models
.
Model
(
inputs
,
output
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
test_forward_RNN
():
_test_RNN
(
2
,
4
)
_test_RNN
(
4
,
3
)
_test_RNN_MultiLayer
(
4
,
12
)
def
_test_GRU
(
inputs
,
units
):
data
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
gru_out
=
keras
.
layers
.
GRU
(
units
,
return_state
=
True
,
recurrent_activation
=
'sigmoid'
,
activation
=
'tanh'
)
x
=
gru_out
(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
_test_GRU_MultiLayer
(
inputs
,
units
):
inputs
=
keras
.
layers
.
Input
(
shape
=
(
1
,
inputs
))
layer
=
keras
.
layers
.
GRU
(
units
,
return_state
=
True
,
return_sequences
=
True
,
recurrent_activation
=
'sigmoid'
,
activation
=
'tanh'
)
outputs
=
layer
(
inputs
)
output
,
state
=
outputs
[
0
],
outputs
[
1
:]
output
=
keras
.
layers
.
GRU
(
units
,
recurrent_activation
=
'sigmoid'
,
activation
=
'tanh'
)(
output
,
initial_state
=
state
)
keras_model
=
keras
.
models
.
Model
(
inputs
,
output
)
verify_keras_frontend
(
keras_model
,
need_transpose
=
False
)
def
test_forward_GRU
():
_test_GRU
(
2
,
4
)
_test_GRU
(
4
,
3
)
_test_GRU_MultiLayer
(
4
,
4
)
if
__name__
==
'__main__'
:
test_forward_elemwise_add
()
test_forward_activations
()
...
...
@@ -272,3 +324,5 @@ if __name__ == '__main__':
test_forward_multi_outputs
()
test_forward_reuse_layers
()
test_forward_LSTM
()
test_forward_RNN
()
test_forward_GRU
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment