Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
5d2ccd66
Commit
5d2ccd66
authored
Jun 23, 2018
by
Tianqi Chen
Committed by
GitHub
Jun 23, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[SCHEDULE] Fuse support for 0 rank tensor (#1328)
parent
0134fabb
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
115 additions
and
15 deletions
+115
-15
include/tvm/schedule.h
+36
-3
python/tvm/schedule.py
+7
-4
src/api/api_lang.cc
+1
-1
src/schedule/message_passing.cc
+11
-0
src/schedule/schedule_lang.cc
+37
-1
tests/python/integration/test_ewise.py
+4
-5
tests/python/unittest/test_lang_schedule.py
+14
-0
topi/tests/python/test_topi_broadcast.py
+5
-1
No files found.
include/tvm/schedule.h
View file @
5d2ccd66
...
...
@@ -130,6 +130,20 @@ class Stage : public NodeRef {
*/
EXPORT
Stage
&
fuse
(
IterVar
outer
,
IterVar
inner
,
IterVar
*
p_target
);
// NOLINT(*)
/*!
* \brief Fuse all the axes together into a single axis.
*
* \param axes All the axes to be fused.
* \param p_target The result target domain.
*
* \note axes can be an empty array,
* in that case, a singleton itervar is created and
* inserted to the outermost loop.
* The fuse of empty array is used to support zero-dimension tensors.
*
* \return reference to self.
*/
EXPORT
Stage
&
fuse
(
const
Array
<
IterVar
>&
axes
,
IterVar
*
p_target
);
// NOLINT(*)
/*!
* \brief Reorder the iteration
* \param order The order of iteration variable.
* \return reference to self.
...
...
@@ -151,9 +165,9 @@ class Stage : public NodeRef {
* \return reference to self.
*/
EXPORT
Stage
&
tile
(
IterVar
x_parent
,
IterVar
y_parent
,
// NOLINT(*)
Expr
x_factor
,
Expr
y_factor
,
IterVar
*
p_x_outer
,
IterVar
*
p_y_outer
,
IterVar
*
p_x_inner
,
IterVar
*
p_y_inner
);
Expr
x_factor
,
Expr
y_factor
,
IterVar
*
p_x_outer
,
IterVar
*
p_y_outer
,
IterVar
*
p_x_inner
,
IterVar
*
p_y_inner
);
/*!
* \brief Vectorize iteration.
* \param var The axis to be vectorized.
...
...
@@ -674,6 +688,25 @@ class RebaseNode : public IterVarRelationNode {
};
/*!
* \brief Singleton iterator [0, 1)
*/
class
SingletonNode
:
public
IterVarRelationNode
{
public
:
/*! \brief The singleton iterator */
IterVar
iter
;
void
VisitAttrs
(
AttrVisitor
*
v
)
final
{
v
->
Visit
(
"iter"
,
&
iter
);
}
static
IterVarRelation
make
(
IterVar
iter
);
static
constexpr
const
char
*
_type_key
=
"Singleton"
;
TVM_DECLARE_NODE_TYPE_INFO
(
SingletonNode
,
IterVarRelationNode
);
};
// implementations
inline
const
StageNode
*
Stage
::
operator
->
()
const
{
return
static_cast
<
const
StageNode
*>
(
node_
.
get
());
...
...
python/tvm/schedule.py
View file @
5d2ccd66
...
...
@@ -153,6 +153,12 @@ class Fuse(NodeBase):
@register_node
class
Singleton
(
NodeBase
):
"""Singleton axis."""
pass
@register_node
class
IterVar
(
NodeBase
,
_expr
.
ExprOp
):
"""Represent iteration variable.
...
...
@@ -380,10 +386,7 @@ class Stage(NodeBase):
fused : IterVar
The fused variable of iteration.
"""
assert
len
(
args
)
>=
1
,
"Length of the arguments must be >=1 for fuse."
fused
=
args
[
0
]
for
i
in
range
(
1
,
len
(
args
)):
fused
=
_api_internal
.
_StageFuse
(
self
,
fused
,
args
[
i
])
fused
=
_api_internal
.
_StageFuse
(
self
,
args
)
return
fused
def
set_scope
(
self
,
scope
):
...
...
src/api/api_lang.cc
View file @
5d2ccd66
...
...
@@ -350,7 +350,7 @@ TVM_REGISTER_API("_StageFuse")
.
set_body
([](
TVMArgs
args
,
TVMRetValue
*
ret
)
{
IterVar
fused
;
args
[
0
].
operator
Stage
()
.
fuse
(
args
[
1
],
args
[
2
],
&
fused
);
.
fuse
(
args
[
1
],
&
fused
);
*
ret
=
fused
;
});
...
...
src/schedule/message_passing.cc
View file @
5d2ccd66
...
...
@@ -82,6 +82,8 @@ void PassDownDomain(const Stage& stage,
Update
(
p_state
,
r
->
rebased
,
Range
::
make_by_min_extent
(
0
,
state
.
at
(
r
->
parent
)
->
extent
));
}
else
if
(
const
SingletonNode
*
s
=
rel
.
as
<
SingletonNode
>
())
{
Update
(
p_state
,
s
->
iter
,
Range
::
make_by_min_extent
(
0
,
1
));
}
else
{
LOG
(
FATAL
)
<<
"unknown relation type"
;
}
...
...
@@ -147,6 +149,7 @@ void PassUpIndex(const Stage& stage,
}
else
{
state
[
s
->
parent
]
=
value
;
}
}
else
if
(
rel
.
as
<
SingletonNode
>
())
{
}
else
{
LOG
(
FATAL
)
<<
"unknown relation type"
;
}
...
...
@@ -192,6 +195,8 @@ void PassDownIndex(const Stage& stage,
Expr
parent_min
=
dom_map
.
at
(
s
->
parent
)
->
min
;
CHECK
(
is_zero
(
parent_min
));
state
[
s
->
rebased
]
=
value
;
}
else
if
(
const
SingletonNode
*
s
=
rel
.
as
<
SingletonNode
>
())
{
state
[
s
->
iter
]
=
make_zero
(
s
->
iter
->
var
.
type
());
}
else
{
LOG
(
FATAL
)
<<
"unknown relation type"
;
}
...
...
@@ -296,6 +301,7 @@ void PassUpDomain(const Stage& stage,
state
.
at
(
r
->
rebased
),
&
parent
);
state
[
r
->
parent
]
=
parent
;
}
else
if
(
rel
.
as
<
SingletonNode
>
())
{
}
else
{
LOG
(
FATAL
)
<<
"unknown relation type"
;
}
...
...
@@ -344,6 +350,7 @@ void PassUpBitMaskOr(const Stage& stage,
}
else
{
state
[
s
->
parent
]
|=
state
[
s
->
rebased
];
}
}
else
if
(
rel
.
as
<
SingletonNode
>
())
{
}
else
{
LOG
(
FATAL
)
<<
"unknown relation type"
;
}
...
...
@@ -390,6 +397,8 @@ void PassDownBitMaskOr(const Stage& stage,
}
else
{
state
[
s
->
rebased
]
|=
state
.
at
(
s
->
parent
);
}
}
else
if
(
const
SingletonNode
*
s
=
rel
.
as
<
SingletonNode
>
())
{
state
[
s
->
iter
]
=
0
;
}
else
{
LOG
(
FATAL
)
<<
"unknown relation type"
;
}
...
...
@@ -438,6 +447,8 @@ void PassUpBoundCheck(const Stage& s,
}
else
if
(
rel
.
as
<
RebaseNode
>
())
{
const
RebaseNode
*
s
=
rel
.
as
<
RebaseNode
>
();
state
[
s
->
parent
]
=
state
.
at
(
s
->
rebased
);
}
else
if
(
rel
.
as
<
SingletonNode
>
())
{
// nop
}
else
{
LOG
(
FATAL
)
<<
"unknown relation type"
;
}
...
...
src/schedule/schedule_lang.cc
View file @
5d2ccd66
...
...
@@ -237,7 +237,6 @@ Stage& Stage::fuse(IterVar outer, IterVar inner, IterVar* p_target) { // NOLINT
IterVar
fused
=
IterVarNode
::
make
(
Range
(),
Var
(
fused_name
,
outer
->
var
.
type
()),
iter_type
);
*
p_target
=
fused
;
ArrayNode
*
all_vars
=
self
->
all_iter_vars
.
CopyOnWrite
();
ArrayNode
*
leaf_vars
=
self
->
leaf_iter_vars
.
CopyOnWrite
();
...
...
@@ -255,6 +254,31 @@ Stage& Stage::fuse(IterVar outer, IterVar inner, IterVar* p_target) { // NOLINT
leaf_vars
->
data
.
begin
()
+
pos_inner
+
1
);
leaf_vars
->
data
.
insert
(
leaf_vars
->
data
.
begin
()
+
pos_outer
,
fused
.
node_
);
*
p_target
=
fused
;
return
*
this
;
}
Stage
&
Stage
::
fuse
(
const
Array
<
IterVar
>&
axes
,
IterVar
*
p_target
)
{
// NOLINT(*)
if
(
axes
.
size
()
!=
0
)
{
IterVar
fused
=
axes
[
0
];
for
(
size_t
i
=
1
;
i
<
axes
.
size
();
++
i
)
{
this
->
fuse
(
fused
,
axes
[
i
],
&
fused
);
}
*
p_target
=
std
::
move
(
fused
);
}
else
{
StageNode
*
self
=
operator
->
();
// special handle fuse empty array.
// insert at the outer most loop
IterVar
singleton
=
IterVarNode
::
make
(
Range
::
make_by_min_extent
(
0
,
1
),
Var
(
"singleton"
,
Int
(
32
)),
kDataPar
);
self
->
relations
.
push_back
(
SingletonNode
::
make
(
singleton
));
ArrayNode
*
all_vars
=
self
->
all_iter_vars
.
CopyOnWrite
();
ArrayNode
*
leaf_vars
=
self
->
leaf_iter_vars
.
CopyOnWrite
();
all_vars
->
data
.
push_back
(
singleton
.
node_
);
leaf_vars
->
data
.
insert
(
leaf_vars
->
data
.
begin
(),
singleton
.
node_
);
*
p_target
=
singleton
;
}
return
*
this
;
}
...
...
@@ -732,11 +756,18 @@ IterVarRelation RebaseNode::make(IterVar parent, IterVar rebased) {
return
IterVarRelation
(
n
);
}
IterVarRelation
SingletonNode
::
make
(
IterVar
iter
)
{
auto
n
=
std
::
make_shared
<
SingletonNode
>
();
n
->
iter
=
iter
;
return
IterVarRelation
(
n
);
}
TVM_REGISTER_NODE_TYPE
(
StageNode
);
TVM_REGISTER_NODE_TYPE
(
IterVarAttrNode
);
TVM_REGISTER_NODE_TYPE
(
SplitNode
);
TVM_REGISTER_NODE_TYPE
(
FuseNode
);
TVM_REGISTER_NODE_TYPE
(
RebaseNode
);
TVM_REGISTER_NODE_TYPE
(
SingletonNode
);
TVM_REGISTER_NODE_TYPE
(
ScheduleNode
);
// Printer
...
...
@@ -778,6 +809,11 @@ TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
p
->
print
(
op
->
rebased
);
p
->
stream
<<
')'
;
})
.
set_dispatch
<
SingletonNode
>
([](
const
SingletonNode
*
op
,
IRPrinter
*
p
)
{
p
->
stream
<<
"singleton("
;
p
->
print
(
op
->
iter
);
p
->
stream
<<
')'
;
})
.
set_dispatch
<
ScheduleNode
>
([](
const
ScheduleNode
*
op
,
IRPrinter
*
p
)
{
p
->
stream
<<
"schedule("
<<
op
<<
")"
;
});
...
...
tests/python/integration/test_ewise.py
View file @
5d2ccd66
...
...
@@ -44,10 +44,10 @@ def test_multiple_cache_write():
n
=
tvm
.
convert
(
1024
)
A0
=
tvm
.
placeholder
((
n
,),
name
=
'A0'
,
dtype
=
"float32"
)
A1
=
tvm
.
placeholder
((
n
,),
name
=
'A1'
,
dtype
=
"float32"
)
B0
,
B1
=
tvm
.
compute
((
n
,),
lambda
*
i
:
(
A0
(
*
i
)
+
A1
(
*
i
),
A0
(
*
i
)
*
A1
(
*
i
)),
B0
,
B1
=
tvm
.
compute
((
n
,),
lambda
*
i
:
(
A0
(
*
i
)
+
A1
(
*
i
),
A0
(
*
i
)
*
A1
(
*
i
)),
name
=
'B'
)
C
=
tvm
.
compute
((
n
,),
lambda
*
i
:
B0
(
*
i
)
+
B1
(
*
i
),
C
=
tvm
.
compute
((
n
,),
lambda
*
i
:
B0
(
*
i
)
+
B1
(
*
i
),
name
=
'C'
)
s
=
tvm
.
create_schedule
(
C
.
op
)
# create iter var and assign them tags.
...
...
@@ -76,7 +76,7 @@ def test_multiple_cache_write():
c
=
tvm
.
nd
.
array
(
np
.
zeros
(
n
,
dtype
=
C
.
dtype
),
ctx
)
func
(
a0
,
a1
,
c
)
np
.
testing
.
assert_allclose
(
c
.
asnumpy
(),
a0
.
asnumpy
()
+
a1
.
asnumpy
()
+
(
a0
.
asnumpy
()
*
a1
.
asnumpy
()),
c
.
asnumpy
(),
a0
.
asnumpy
()
+
a1
.
asnumpy
()
+
(
a0
.
asnumpy
()
*
a1
.
asnumpy
()),
rtol
=
1e-5
)
check_device
(
"cuda"
,
"llvm"
)
...
...
@@ -235,7 +235,6 @@ def try_warp_memory():
f
(
a
,
b
)
np
.
testing
.
assert_allclose
(
b
.
asnumpy
(),
a
.
asnumpy
()
+
3
,
rtol
=
1e-6
)
check_device
(
"cuda"
)
...
...
tests/python/unittest/test_lang_schedule.py
View file @
5d2ccd66
...
...
@@ -84,6 +84,19 @@ def test_fuse():
assert
any
(
isinstance
(
x
,
tvm
.
schedule
.
Fuse
)
for
x
in
s
[
T
]
.
relations
)
assert
tuple
(
s
[
T
]
.
leaf_iter_vars
)
==
(
fused
,
xi
,
yi
)
def
test_singleton
():
A
=
tvm
.
placeholder
((),
name
=
'A'
)
T
=
tvm
.
compute
((),
lambda
:
A
()
+
1
)
s
=
tvm
.
create_schedule
(
T
.
op
)
fused
=
s
[
T
]
.
fuse
()
assert
any
(
isinstance
(
x
,
tvm
.
schedule
.
Singleton
)
for
x
in
s
[
T
]
.
relations
)
assert
tuple
(
s
[
T
]
.
leaf_iter_vars
)
==
(
fused
,)
dump
=
pkl
.
dumps
(
s
)
s_loaded
=
pkl
.
loads
(
dump
)
assert
isinstance
(
s_loaded
,
tvm
.
schedule
.
Schedule
)
def
test_vectorize
():
m
=
tvm
.
var
(
'm'
)
n
=
tvm
.
var
(
'n'
)
...
...
@@ -174,6 +187,7 @@ def test_tensor_intrin():
if
__name__
==
"__main__"
:
test_singleton
()
test_pragma
()
test_tensor_intrin
()
test_rfactor
()
...
...
topi/tests/python/test_topi_broadcast.py
View file @
5d2ccd66
...
...
@@ -94,6 +94,8 @@ def test_broadcast_to():
def
test_add
():
verify_broadcast_binary_ele
(
(),
(),
topi
.
add
,
np
.
add
)
verify_broadcast_binary_ele
(
(
5
,
2
,
3
),
(
2
,
1
),
topi
.
add
,
np
.
add
)
def
test_subtract
():
...
...
@@ -114,6 +116,8 @@ def test_divide():
verify_broadcast_binary_ele
(
None
,
(
10
,),
topi
.
divide
,
np
.
divide
,
rhs_min
=
0.0001
)
verify_broadcast_binary_ele
(
(),
None
,
topi
.
divide
,
np
.
divide
,
rhs_min
=
0.0001
)
verify_broadcast_binary_ele
(
(
2
,
3
,
1
,
32
),
(
64
,
32
),
topi
.
divide
,
np
.
divide
,
rhs_min
=
0.0001
)
def
test_maximum_minmum
():
...
...
@@ -157,10 +161,10 @@ def test_shift():
if
__name__
==
"__main__"
:
test_add
()
test_shift
()
test_cmp
()
test_mod
()
test_add
()
test_subtract
()
test_multiply
()
test_divide
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment