Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
5bcd3313
Commit
5bcd3313
authored
Nov 07, 2019
by
Jon Soifer
Committed by
Tianqi Chen
Nov 07, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Frontend][ONNX] Add support for broadcasting to Where and MatMul (#4267)
parent
14a5a358
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
25 additions
and
5 deletions
+25
-5
python/tvm/relay/frontend/onnx.py
+15
-0
tests/python/frontend/onnx/test_forward.py
+10
-5
No files found.
python/tvm/relay/frontend/onnx.py
View file @
5bcd3313
...
@@ -298,6 +298,12 @@ class MatMul(OnnxOpConverter):
...
@@ -298,6 +298,12 @@ class MatMul(OnnxOpConverter):
# Convert a and b into 3 dimensional tensors.
# Convert a and b into 3 dimensional tensors.
a
=
_op
.
reshape
(
inputs
[
0
],
[
-
1
,
a_shape
[
-
2
],
a_shape
[
-
1
]])
a
=
_op
.
reshape
(
inputs
[
0
],
[
-
1
,
a_shape
[
-
2
],
a_shape
[
-
1
]])
b
=
_op
.
reshape
(
inputs
[
1
],
[
-
1
,
b_shape
[
-
2
],
b_shape
[
-
1
]])
b
=
_op
.
reshape
(
inputs
[
1
],
[
-
1
,
b_shape
[
-
2
],
b_shape
[
-
1
]])
# Broadcast b to match batch size of a
new_b_shape
=
list
(
infer_shape
(
b
))
new_a_shape
=
infer_shape
(
a
)
if
new_a_shape
[
0
]
>
new_b_shape
[
0
]:
new_b_shape
[
0
]
=
new_a_shape
[
0
]
b
=
_op
.
broadcast_to
(
b
,
new_b_shape
)
# Transpose matrix dimensions of b.
# Transpose matrix dimensions of b.
b
=
_op
.
transpose
(
b
,
[
0
,
2
,
1
])
b
=
_op
.
transpose
(
b
,
[
0
,
2
,
1
])
# Perform a batch matmul.
# Perform a batch matmul.
...
@@ -987,6 +993,14 @@ class Where(OnnxOpConverter):
...
@@ -987,6 +993,14 @@ class Where(OnnxOpConverter):
"""
"""
@classmethod
@classmethod
def
_impl_v9
(
cls
,
inputs
,
attr
,
params
):
def
_impl_v9
(
cls
,
inputs
,
attr
,
params
):
# x and y can be broadcasted
condition_shape
=
infer_shape
(
inputs
[
0
])
x_shape
=
infer_shape
(
inputs
[
1
])
y_shape
=
infer_shape
(
inputs
[
2
])
if
len
(
condition_shape
)
>
len
(
x_shape
):
inputs
[
1
]
=
_op
.
broadcast_to
(
inputs
[
1
],
condition_shape
)
if
len
(
condition_shape
)
>
len
(
y_shape
):
inputs
[
2
]
=
_op
.
broadcast_to
(
inputs
[
2
],
condition_shape
)
return
_op
.
where
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
])
return
_op
.
where
(
inputs
[
0
],
inputs
[
1
],
inputs
[
2
])
class
Or
(
Elemwise
):
class
Or
(
Elemwise
):
...
@@ -996,6 +1010,7 @@ class Or(Elemwise):
...
@@ -996,6 +1010,7 @@ class Or(Elemwise):
def
_impl_v7
(
cls
,
inputs
,
attr
,
params
):
def
_impl_v7
(
cls
,
inputs
,
attr
,
params
):
return
_op
.
logical_or
(
inputs
[
0
],
inputs
[
1
])
return
_op
.
logical_or
(
inputs
[
0
],
inputs
[
1
])
# compatible operators that do NOT require any conversion.
# compatible operators that do NOT require any conversion.
_identity_list
=
[]
_identity_list
=
[]
...
...
tests/python/frontend/onnx/test_forward.py
View file @
5bcd3313
...
@@ -498,11 +498,7 @@ def test_matmul():
...
@@ -498,11 +498,7 @@ def test_matmul():
model
,
[
a_array
,
b_array
],
target
,
ctx
,
out_np
.
shape
)
model
,
[
a_array
,
b_array
],
target
,
ctx
,
out_np
.
shape
)
tvm
.
testing
.
assert_allclose
(
out_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
tvm
.
testing
.
assert_allclose
(
out_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
verify_batch_matmul
(
a_shape
,
b_shape
):
def
test_batch_matmul
():
a_shape
=
(
2
,
3
,
4
,
3
)
b_shape
=
(
2
,
3
,
3
,
4
)
a_array
=
np
.
random
.
uniform
(
size
=
a_shape
)
.
astype
(
'float32'
)
a_array
=
np
.
random
.
uniform
(
size
=
a_shape
)
.
astype
(
'float32'
)
b_array
=
np
.
random
.
uniform
(
size
=
b_shape
)
.
astype
(
'float32'
)
b_array
=
np
.
random
.
uniform
(
size
=
b_shape
)
.
astype
(
'float32'
)
out_np
=
np
.
matmul
(
a_array
,
b_array
)
out_np
=
np
.
matmul
(
a_array
,
b_array
)
...
@@ -525,6 +521,10 @@ def test_batch_matmul():
...
@@ -525,6 +521,10 @@ def test_batch_matmul():
model
,
[
a_array
,
b_array
],
target
,
ctx
,
out_np
.
shape
)
model
,
[
a_array
,
b_array
],
target
,
ctx
,
out_np
.
shape
)
tvm
.
testing
.
assert_allclose
(
out_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
tvm
.
testing
.
assert_allclose
(
out_np
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_batch_matmul
():
verify_batch_matmul
((
2
,
3
,
4
,
3
),
(
2
,
3
,
3
,
4
))
verify_batch_matmul
((
2
,
4
,
3
),
(
3
,
4
))
verify_batch_matmul
((
2
,
3
,
4
,
3
),
(
3
,
4
))
def
verify_lrn
(
shape
,
nsize
,
dtype
,
alpha
=
None
,
beta
=
None
,
bias
=
None
):
def
verify_lrn
(
shape
,
nsize
,
dtype
,
alpha
=
None
,
beta
=
None
,
bias
=
None
):
in_array
=
np
.
random
.
uniform
(
size
=
shape
)
.
astype
(
dtype
)
in_array
=
np
.
random
.
uniform
(
size
=
shape
)
.
astype
(
dtype
)
...
@@ -1600,6 +1600,11 @@ def test_where():
...
@@ -1600,6 +1600,11 @@ def test_where():
outdata
=
np
.
where
(
condition
,
x
,
y
)
outdata
=
np
.
where
(
condition
,
x
,
y
)
verify_where
(
condition
,
x
,
y
,
TensorProto
.
FLOAT
,
outdata
)
verify_where
(
condition
,
x
,
y
,
TensorProto
.
FLOAT
,
outdata
)
x
=
np
.
array
(
1
,
dtype
=
np
.
float32
)
y
=
np
.
array
([
2
],
dtype
=
np
.
float32
)
outdata
=
np
.
where
(
condition
,
x
,
y
)
verify_where
(
condition
,
x
,
y
,
TensorProto
.
FLOAT
,
outdata
)
def
verify_or
(
indata
,
dtype
):
def
verify_or
(
indata
,
dtype
):
x
=
indata
[
0
]
.
astype
(
dtype
)
x
=
indata
[
0
]
.
astype
(
dtype
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment