Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
56299010
Commit
56299010
authored
Jun 22, 2019
by
Haichen Shen
Committed by
Yao Wang
Jun 22, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Frontend][MxNet] Support bidirectional RNN layer (#3397)
* Support bidirectional RNN layer * tweak * tweak
parent
b98e2c76
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
75 additions
and
39 deletions
+75
-39
python/tvm/relay/frontend/mxnet.py
+60
-29
tests/python/frontend/mxnet/test_forward.py
+15
-10
No files found.
python/tvm/relay/frontend/mxnet.py
View file @
56299010
...
...
@@ -748,13 +748,12 @@ def _mx_rnn_layer(inputs, attrs):
num_layers
=
attrs
.
get_int
(
"num_layers"
,
1
)
mode
=
attrs
.
get_str
(
"mode"
)
output_states
=
attrs
.
get_bool
(
"state_outputs"
,
False
)
if
mode
.
startswith
(
"rnn"
):
mode
,
activation
=
mode
.
split
(
'_'
)
assert
mode
in
[
"rnn"
,
"gru"
,
"lstm"
]
bidirectional
=
attrs
.
get_bool
(
"bidirectional"
,
False
)
if
bidirectional
:
raise
tvm
.
error
.
OpAttributeUnimplemented
(
"Bidirectional RNN op is not supported yet"
)
direct
=
2
if
bidirectional
else
1
layout
=
attrs
.
get_str
(
"layout"
,
"TNC"
)
if
layout
!=
"TNC"
:
raise
tvm
.
error
.
OpAttributeUnimplemented
(
...
...
@@ -765,11 +764,10 @@ def _mx_rnn_layer(inputs, attrs):
seq_data
=
inputs
[
0
]
concat_weight
=
inputs
[
1
]
init_states
=
inputs
[
2
:]
data_shape
=
ir_pass
.
infer_type
(
seq_data
)
.
checked_type
.
shape
seq_len
=
int
(
data_shape
[
0
])
assert
len
(
concat_weight
)
==
num_layers
*
4
output_states
=
True
assert
len
(
concat_weight
)
==
num_layers
*
4
*
direct
for
idx
,
state
in
enumerate
(
init_states
[:]):
if
isinstance
(
state
,
dict
):
node
=
state
...
...
@@ -787,43 +785,76 @@ def _mx_rnn_layer(inputs, attrs):
assert
axis
>=
0
new_shape
[
i
]
=
int
(
data_shape
[
axis
])
init_states
[
idx
]
=
_op
.
zeros
(
new_shape
,
dtype
)
output_states
=
False
weights
=
[]
bias
=
[]
states
=
[]
back_weights
=
[]
back_bias
=
[]
back_states
=
[]
for
i
in
range
(
num_layers
):
w
=
[]
b
=
[]
weights
.
append
([
concat_weight
[
i
*
2
*
direct
]
.
args
[
0
],
concat_weight
[
i
*
2
*
direct
+
1
]
.
args
[
0
]])
bias
.
append
([
concat_weight
[(
num_layers
+
i
)
*
2
*
direct
]
.
args
[
0
],
concat_weight
[(
num_layers
+
i
)
*
2
*
direct
+
1
]
.
args
[
0
]])
s
=
[]
for
j
in
range
(
2
):
w
.
append
(
concat_weight
[
i
*
2
+
j
]
.
args
[
0
])
b
.
append
(
concat_weight
[
num_layers
*
2
+
i
*
2
+
j
]
.
args
[
0
])
for
state
in
init_states
:
s
.
append
(
_op
.
take
(
state
,
_expr
.
const
(
i
,
"int32"
),
axis
=
0
))
weights
.
append
(
w
)
bias
.
append
(
b
)
s
.
append
(
_op
.
take
(
state
,
_expr
.
const
(
i
*
direct
,
"int32"
),
axis
=
0
))
states
.
append
(
s
)
seq_output
=
[]
for
t
in
range
(
seq_len
):
data
=
_op
.
take
(
seq_data
,
_expr
.
const
(
t
,
"int32"
),
axis
=
0
)
for
l
in
range
(
num_layers
):
if
bidirectional
:
back_weights
.
append
([
concat_weight
[
i
*
2
*
direct
+
2
]
.
args
[
0
],
concat_weight
[
i
*
2
*
direct
+
3
]
.
args
[
0
]])
back_bias
.
append
([
concat_weight
[(
num_layers
+
i
)
*
2
*
direct
+
2
]
.
args
[
0
],
concat_weight
[(
num_layers
+
i
)
*
2
*
direct
+
3
]
.
args
[
0
]])
s
=
[]
for
state
in
init_states
:
s
.
append
(
_op
.
take
(
state
,
_expr
.
const
(
i
*
direct
+
1
,
"int32"
),
axis
=
0
))
back_states
.
append
(
s
)
xs
=
[
_op
.
take
(
seq_data
,
_expr
.
const
(
t
,
"int32"
),
axis
=
0
)
for
t
in
range
(
seq_len
)]
for
l
in
range
(
num_layers
):
outputs
=
[]
back_outputs
=
[]
for
x
in
xs
:
if
mode
==
"rnn"
:
out
,
new_states
=
_rnn_cell
(
data
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
],
activation
)
out
,
new_states
=
_rnn_cell
(
x
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
],
activation
)
elif
mode
==
"gru"
:
out
,
new_states
=
_gru_cell
(
data
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
])
out
,
new_states
=
_gru_cell
(
x
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
])
else
:
# mode == "lstm"
out
,
new_states
=
_lstm_cell
(
data
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
])
out
,
new_states
=
_lstm_cell
(
x
,
states
[
l
],
*
weights
[
l
],
*
bias
[
l
])
states
[
l
]
=
new_states
data
=
out
seq_output
.
append
(
out
)
outputs
=
[
_op
.
stack
(
seq_output
,
axis
=
0
)]
outputs
.
append
(
out
)
if
bidirectional
:
for
x
in
reversed
(
xs
):
if
mode
==
"rnn"
:
out
,
new_states
=
_rnn_cell
(
x
,
back_states
[
l
],
*
back_weights
[
l
],
*
back_bias
[
l
],
activation
)
elif
mode
==
"gru"
:
out
,
new_states
=
_gru_cell
(
x
,
back_states
[
l
],
*
back_weights
[
l
],
*
back_bias
[
l
])
else
:
# mode == "lstm"
out
,
new_states
=
_lstm_cell
(
x
,
back_states
[
l
],
*
back_weights
[
l
],
*
back_bias
[
l
])
back_states
[
l
]
=
new_states
back_outputs
.
append
(
out
)
back_outputs
.
reverse
()
concat_outputs
=
[]
for
t
,
out
in
enumerate
(
outputs
):
new_out
=
_op
.
concatenate
([
out
,
back_outputs
[
t
]],
axis
=-
1
)
concat_outputs
.
append
(
new_out
)
outputs
=
concat_outputs
xs
=
outputs
ret
=
[
_op
.
stack
(
outputs
,
axis
=
0
)]
if
output_states
:
for
i
in
range
(
num_states
):
outputs
.
append
(
_op
.
stack
([
s
[
i
]
for
s
in
states
],
axis
=
0
))
return
outputs
inputs
=
[]
for
l
,
s
in
enumerate
(
states
):
inputs
.
append
(
s
[
i
])
if
bidirectional
:
inputs
.
append
(
back_states
[
l
][
i
])
ret
.
append
(
_op
.
stack
(
inputs
,
axis
=
0
))
return
ret
# Note: due to attribute conversion constraint
...
...
tests/python/frontend/mxnet/test_forward.py
View file @
56299010
...
...
@@ -536,29 +536,31 @@ def test_forward_bilinear_resize():
verify_mxnet_frontend_impl
(
mx_sym
,
(
1
,
2
,
3
,
4
),
(
1
,
2
,
5
,
10
))
def
test_forward_rnn_layer
():
def
verify
(
mode
,
input_size
,
seq_len
,
hidden_size
,
num_layers
,
init_states
=
True
):
def
verify
(
mode
,
seq_len
,
input_size
,
hidden_size
,
num_layers
,
batch
=
1
,
init_states
=
True
,
bidirectional
=
False
):
if
mode
==
"rnn"
:
layer
=
gluon
.
rnn
.
RNN
(
hidden_size
,
num_layers
)
layer
=
gluon
.
rnn
.
RNN
(
hidden_size
,
num_layers
,
bidirectional
=
bidirectional
)
elif
mode
==
"gru"
:
layer
=
gluon
.
rnn
.
GRU
(
hidden_size
,
num_layers
)
layer
=
gluon
.
rnn
.
GRU
(
hidden_size
,
num_layers
,
bidirectional
=
bidirectional
)
else
:
# mode == "lstm"
layer
=
gluon
.
rnn
.
LSTM
(
hidden_size
,
num_layers
)
layer
=
gluon
.
rnn
.
LSTM
(
hidden_size
,
num_layers
,
bidirectional
=
bidirectional
)
num_states
=
2
if
mode
==
"lstm"
else
1
layer
.
initialize
()
layer
.
hybridize
()
dtype
=
"float32"
batch
=
1
directions
=
2
if
bidirectional
else
1
data_np
=
np
.
random
.
uniform
(
size
=
(
seq_len
,
batch
,
input_size
))
.
astype
(
dtype
)
data_mx
=
mx
.
nd
.
array
(
data_np
)
if
init_states
:
shape_dict
=
{
'data0'
:
data_np
.
shape
}
inputs
=
{
'data0'
:
data_np
}
state_shape
=
(
num_layers
*
directions
,
batch
,
hidden_size
)
states_np
=
[]
states_mx
=
[]
for
i
in
range
(
num_states
):
s
=
np
.
random
.
uniform
(
size
=
(
num_layers
,
batch
,
hidden_size
)
)
.
astype
(
dtype
)
s
=
np
.
random
.
uniform
(
size
=
state_shape
)
.
astype
(
dtype
)
states_np
.
append
(
s
)
states_mx
.
append
(
mx
.
nd
.
array
(
s
))
shape_dict
[
'data
%
s'
%
(
i
+
1
)]
=
s
.
shape
...
...
@@ -592,10 +594,13 @@ def test_forward_rnn_layer():
op_res
.
asnumpy
(),
mx_res
.
asnumpy
(),
rtol
=
1e-3
)
for
mode
in
[
"rnn"
,
"gru"
,
"lstm"
]:
verify
(
mode
,
64
,
10
,
64
,
1
)
verify
(
mode
,
64
,
10
,
64
,
2
)
verify
(
mode
,
64
,
10
,
32
,
2
)
verify
(
mode
,
64
,
10
,
64
,
2
,
init_states
=
False
)
verify
(
mode
,
1
,
64
,
64
,
1
)
verify
(
mode
,
10
,
64
,
64
,
2
)
verify
(
mode
,
10
,
64
,
32
,
2
)
verify
(
mode
,
10
,
64
,
32
,
2
,
batch
=
2
)
verify
(
mode
,
10
,
64
,
64
,
3
,
init_states
=
False
)
verify
(
mode
,
10
,
32
,
64
,
1
,
bidirectional
=
True
)
verify
(
mode
,
10
,
64
,
64
,
3
,
batch
=
2
,
bidirectional
=
True
,
init_states
=
False
)
def
test_forward_Crop
():
def
verify
(
xshape
,
yshape
,
offset
=
None
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment