Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
50d8773b
Commit
50d8773b
authored
Jan 09, 2018
by
Yida Wang
Committed by
Tianqi Chen
Jan 09, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
small fixes on docs (#769)
* small fixs on docs * add IR output after parallelization
parent
6d061556
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
13 additions
and
7 deletions
+13
-7
docs/how_to/contribute.md
+0
-1
tutorials/optimize/opt_gemm.py
+13
-6
No files found.
docs/how_to/contribute.md
View file @
50d8773b
...
@@ -14,7 +14,6 @@ Everyone is more than welcome to contribute. It is a way to make the project bet
...
@@ -14,7 +14,6 @@ Everyone is more than welcome to contribute. It is a way to make the project bet
-
[
What is the consequence of force push
](
#what-is-the-consequence-of-force-push
)
-
[
What is the consequence of force push
](
#what-is-the-consequence-of-force-push
)
*
[
Document
](
#document
)
*
[
Document
](
#document
)
*
[
Testcases
](
#testcases
)
*
[
Testcases
](
#testcases
)
*
[
Examples
](
#examples
)
*
[
Core Library
](
#core-library
)
*
[
Core Library
](
#core-library
)
*
[
Python Package
](
#python-package
)
*
[
Python Package
](
#python-package
)
...
...
tutorials/optimize/opt_gemm.py
View file @
50d8773b
...
@@ -26,7 +26,7 @@ Actually, all the methodologies used in this tutorial is a subset of tricks ment
...
@@ -26,7 +26,7 @@ Actually, all the methodologies used in this tutorial is a subset of tricks ment
abstraction automatically, but some of them cannot be simply applied due to TVM constraints.
abstraction automatically, but some of them cannot be simply applied due to TVM constraints.
All the experiment results mentioned below, are executed on 2015's 15' MacBook equiped with
All the experiment results mentioned below, are executed on 2015's 15' MacBook equiped with
Intel i7-4770QH CPU. The cache line size should be 64 bytes for all the x86 CPU.
Intel i7-4770QH CPU. The cache line size should be 64 bytes for all the x86 CPU
s
.
"""
"""
###############################################################################
###############################################################################
...
@@ -230,7 +230,7 @@ print(tvm.lower(s, [A, B, C], simple_mode=True))
...
@@ -230,7 +230,7 @@ print(tvm.lower(s, [A, B, C], simple_mode=True))
###################################################################################################
###################################################################################################
# Parallel
# Parallel
# -------------
# -------------
# Futhermore, we can also utilize multi-core processors to
parallelize comput
ation.
# Futhermore, we can also utilize multi-core processors to
do the thread-level paralleliz
ation.
s
=
tvm
.
create_schedule
(
C
.
op
)
s
=
tvm
.
create_schedule
(
C
.
op
)
xo
,
yo
,
xi
,
yi
=
s
[
C
]
.
tile
(
C
.
op
.
axis
[
0
],
C
.
op
.
axis
[
1
],
bn
,
bn
)
xo
,
yo
,
xi
,
yi
=
s
[
C
]
.
tile
(
C
.
op
.
axis
[
0
],
C
.
op
.
axis
[
1
],
bn
,
bn
)
...
@@ -251,11 +251,18 @@ evaluator = func.time_evaluator(func.entry_name, tvm.cpu(0), number=50)
...
@@ -251,11 +251,18 @@ evaluator = func.time_evaluator(func.entry_name, tvm.cpu(0), number=50)
opt5_time
=
evaluator
(
a
,
b
,
c
)
.
mean
opt5_time
=
evaluator
(
a
,
b
,
c
)
.
mean
print
(
'Opt5:
%
f'
%
opt5_time
)
print
(
'Opt5:
%
f'
%
opt5_time
)
################################################################################################
# Here is the generated IR after parallelization.
print
(
tvm
.
lower
(
s
,
[
A
,
B
,
C
],
simple_mode
=
True
))
###################################################################################################
##################################################################################################
##################################################################################################
# Summary
# Summary
# -------
# -------
# After applying the above simple optimizations with only 6 lines of code,
# After applying the above simple optimizations with only 6 lines of code,
# our generated code can achieve 30% of
numpy
performance with Apple implemented BLAS.
# our generated code can achieve 30% of
the `numpy`
performance with Apple implemented BLAS.
#
#
Note that the outputs on the webpage reflect the running times on a non-exclusive
#
We can see TVM is very powerful tool to optimize low level computation.
#
Docker container, thereby they are *unreliable*. It is highly encouraged to run the
# tutorial by yourself to observe the performance gain acheived by TVM.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment