Commit 5050ab5e by Alexander Pivovarov Committed by Yao Wang

TFLite: Add fused_activation_function for ADD, SUB, MUL, DIV (#3372)

parent df6957a5
......@@ -298,6 +298,12 @@ class OperatorConverter(object):
"""Generic method to Convert TFLite elemwise"""
try:
from tflite.Operator import Operator
from tflite.AddOptions import AddOptions
from tflite.SubOptions import SubOptions
from tflite.MulOptions import MulOptions
from tflite.DivOptions import DivOptions
from tflite.BuiltinOptions import BuiltinOptions
from tflite.ActivationFunctionType import ActivationFunctionType
except ImportError:
raise ImportError("The tflite package must be installed")
......@@ -320,6 +326,26 @@ class OperatorConverter(object):
rhs_expr = self.exp_tab.new_const(self.get_tensor_value(rhs_tensor),
dtype=rhs_type_str)
out = relay_op(lhs_expr, rhs_expr)
# Options (fused_activation_function)
options = None
if op.BuiltinOptionsType() == BuiltinOptions.AddOptions:
options = AddOptions()
elif op.BuiltinOptionsType() == BuiltinOptions.SubOptions:
options = SubOptions()
elif op.BuiltinOptionsType() == BuiltinOptions.MulOptions:
options = MulOptions()
elif op.BuiltinOptionsType() == BuiltinOptions.DivOptions:
options = DivOptions()
if options is not None:
op_options = op.BuiltinOptions()
options.Init(op_options.Bytes, op_options.Pos)
fused_activation_fn = options.FusedActivationFunction()
# if we have activation fn
if fused_activation_fn != ActivationFunctionType.NONE:
out = self.convert_fused_activation_function(out, fused_activation_fn)
return out
def convert_add(self, op):
......
......@@ -21,6 +21,7 @@ TFLite testcases
This article is a test script to test TFLite operator with Relay.
"""
from __future__ import print_function
from functools import partial
import numpy as np
import tvm
from tvm import relay
......@@ -146,6 +147,20 @@ def compare_tflite_with_tvm(in_data, in_name, input_tensors,
tvm.testing.assert_allclose(tflite_output[i], tvm_output[i], atol=1e-5, rtol=1e-5)
def with_fused_activation_function(input_tensor, fn_name):
if fn_name is None or fn_name == "NONE":
return input_tensor
if fn_name == "RELU":
return nn_ops.relu(input_tensor)
if fn_name == "RELU6":
return nn_ops.relu6(input_tensor)
if fn_name == "RELU_N1_TO_1":
return math_ops.maximum(-1, math_ops.minimum(input_tensor, 1))
if fn_name == "TANH":
return math_ops.tanh(input_tensor)
raise AssertionError("Unknown fused_activation_function {}".format(fn_name))
#######################################################################
# Pooling
# -------
......@@ -313,7 +328,7 @@ def test_forward_concatenation():
# Element-wise
# ---
def _test_elemwise(math_op, data):
def _test_elemwise(math_op, data, fused_activation_function=None):
""" One iteration of add """
assert len(data) == 2
......@@ -323,12 +338,14 @@ def _test_elemwise(math_op, data):
in_data = [array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in_0'),
array_ops.placeholder(shape=data[1].shape, dtype=data[1].dtype, name='in_1')]
out = math_op(in_data[0], in_data[1])
out = with_fused_activation_function(out, fused_activation_function)
compare_tflite_with_tvm(data, ['in_0:0', 'in_1:0'], in_data, [out])
# Test with tensor and constant
with tf.Graph().as_default():
in_data = [array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in')]
out = math_op(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype))
out = with_fused_activation_function(out, fused_activation_function)
compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out])
......@@ -336,31 +353,31 @@ def _test_elemwise(math_op, data):
# Add
# ---
def _test_add(data):
def _test_add(data, fused_activation_function=None):
""" One iteration of add """
return _test_elemwise(math_ops.add, data)
return _test_elemwise(math_ops.add, data, fused_activation_function)
#######################################################################
# Subtract
# --------
def _test_sub(data):
def _test_sub(data, fused_activation_function=None):
""" One iteration of subtract """
return _test_elemwise(math_ops.subtract, data)
return _test_elemwise(math_ops.subtract, data, fused_activation_function)
#######################################################################
# Mul
# ---
def _test_mul(data):
def _test_mul(data, fused_activation_function=None):
""" One iteration of mul """
return _test_elemwise(math_ops.multiply, data)
return _test_elemwise(math_ops.multiply, data, fused_activation_function)
#######################################################################
# Divide
# ------
def _test_div(data):
def _test_div(data, fused_activation_function=None):
""" One iteration of divide """
return _test_elemwise(math_ops.divide, data)
return _test_elemwise(math_ops.divide, data, fused_activation_function)
#######################################################################
# Power
# -----
......@@ -386,17 +403,25 @@ def _test_minimum(data):
def _test_forward_elemwise(testop):
""" Elewise"""
testop([np.arange(6.0, dtype=np.float32).reshape((2, 1, 1, 3)),
np.arange(6.0, dtype=np.float32).reshape((2, 1, 1, 3))])
np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3))])
testop([np.arange(6.0, dtype=np.float32).reshape((2, 1, 3)),
np.arange(6.0, dtype=np.float32).reshape((2, 1, 3))])
np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3))])
testop([np.arange(3.0, dtype=np.float32).reshape((1, 3)),
np.arange(3.0, dtype=np.float32).reshape((1, 3))])
np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3))])
def test_all_elemwise():
_test_forward_elemwise(_test_add)
_test_forward_elemwise(partial(_test_add, fused_activation_function="RELU"))
_test_forward_elemwise(partial(_test_add, fused_activation_function="RELU6"))
_test_forward_elemwise(_test_sub)
_test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU"))
_test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU6"))
_test_forward_elemwise(_test_mul)
_test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU"))
_test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU6"))
_test_forward_elemwise(_test_div)
_test_forward_elemwise(partial(_test_div, fused_activation_function="RELU"))
_test_forward_elemwise(partial(_test_div, fused_activation_function="RELU6"))
_test_forward_elemwise(_test_pow)
_test_forward_elemwise(_test_maximum)
_test_forward_elemwise(_test_minimum)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment