Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
4fbc2fbe
Unverified
Commit
4fbc2fbe
authored
Mar 14, 2020
by
masahi
Committed by
GitHub
Mar 14, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Torch, QNN] Remove FP32 piggy back and use QNN add/mul/concatenate (#5061)
* use qnn add/mul/concatenate * remove logging
parent
d7a74838
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
70 additions
and
29 deletions
+70
-29
python/tvm/relay/frontend/qnn_torch.py
+70
-29
No files found.
python/tvm/relay/frontend/qnn_torch.py
View file @
4fbc2fbe
...
...
@@ -16,6 +16,7 @@
# under the License.
# pylint: disable=invalid-name, import-outside-toplevel
""" Functions to convert quantized torch models to QNN """
import
logging
import
numpy
as
np
...
...
@@ -536,21 +537,23 @@ def _linear(with_relu=False):
return
_impl
def
_binop
(
relay_op
,
with_relu
=
False
):
def
_binop
(
relay_op
,
with_relu
=
False
,
fp32_piggy_back
=
False
):
def
qnn_impl
(
lhs
,
rhs
,
input_scale_lhs
,
input_zero_point_lhs
,
input_scale_rhs
,
input_zero_point_rhs
,
output_scale
,
output_zero_point
):
qnn_out
=
relay_op
(
lhs
,
rhs
,
input_scale_lhs
,
input_zero_point_lhs
,
input_scale_rhs
,
input_zero_point_rhs
,
output_scale
,
output_zero_point
)
if
with_relu
:
clip_min
=
_get_scalar
(
output_zero_point
)
return
_op
.
tensor
.
clip
(
qnn_out
,
clip_min
,
255
)
return
qnn_out
# refer to aten/src/ATen/native/quantized/cpu/{qadd, qmul}.cpp
# they piggy backs to fp32 math by dequantize -> fp32 math -> quantize
def
_impl
(
inputs
,
_
):
output_scale
=
_expr
.
const
(
inputs
[
2
])
output_zero_point
=
_expr
.
const
(
inputs
[
3
])
assert
len
(
inputs
)
==
8
,
"Input quant params not found in op inputs"
# Manually added by add_input_quant_params_to_op_inputs above
input_scale_lhs
=
_expr
.
const
(
inputs
[
4
])
input_zero_point_lhs
=
_expr
.
const
(
inputs
[
5
])
input_scale_rhs
=
_expr
.
const
(
inputs
[
6
])
input_zero_point_rhs
=
_expr
.
const
(
inputs
[
7
])
lhs
=
inputs
[
0
]
rhs
=
inputs
[
1
]
def
torch_impl
(
lhs
,
rhs
,
input_scale_lhs
,
input_zero_point_lhs
,
input_scale_rhs
,
input_zero_point_rhs
,
output_scale
,
output_zero_point
):
if
isinstance
(
lhs
,
_expr
.
Call
)
and
lhs
.
op
.
name
==
'qnn.quantize'
:
lhs
=
lhs
.
args
[
0
]
else
:
...
...
@@ -574,30 +577,68 @@ def _binop(relay_op, with_relu=False):
output_zero_point
,
axis
=-
1
,
out_dtype
=
"uint8"
)
def
_impl
(
inputs
,
_
):
lhs
=
inputs
[
0
]
rhs
=
inputs
[
1
]
output_scale
=
_expr
.
const
(
inputs
[
2
])
output_zero_point
=
_expr
.
const
(
inputs
[
3
])
assert
len
(
inputs
)
==
8
,
"Input quant params not found in op inputs"
# Manually added by add_input_quant_params_to_op_inputs above
input_scale_lhs
=
_expr
.
const
(
inputs
[
4
])
input_zero_point_lhs
=
_expr
.
const
(
inputs
[
5
])
input_scale_rhs
=
_expr
.
const
(
inputs
[
6
])
input_zero_point_rhs
=
_expr
.
const
(
inputs
[
7
])
if
fp32_piggy_back
:
logging
.
info
(
"Piggy backing to FP32 op (PyTorch way)"
)
return
torch_impl
(
lhs
,
rhs
,
input_scale_lhs
,
input_zero_point_lhs
,
input_scale_rhs
,
input_zero_point_rhs
,
output_scale
,
output_zero_point
)
return
qnn_impl
(
lhs
,
rhs
,
input_scale_lhs
,
input_zero_point_lhs
,
input_scale_rhs
,
input_zero_point_rhs
,
output_scale
,
output_zero_point
)
return
_impl
def
_cat
():
def
_cat
(
fp32_piggy_back
=
False
):
# refer to aten/src/ATen/native/quantized/cpu/qconcat.cpp
# for concat they also piggy backs to fp32(!)
# dequantize -> fp32 math -> quantize
# we can also use QNN concat op. we observed no change in accuracy
def
torch_impl
(
inputs
,
input_scales
,
input_zero_points
,
output_scale
,
output_zero_point
,
axis
):
dequantized
=
[]
for
inp
,
inp_scale
,
inp_zp
in
zip
(
inputs
,
input_scales
,
input_zero_points
):
dequantized
.
append
(
relay
.
qnn
.
op
.
dequantize
(
inp
,
inp_scale
,
inp_zp
))
concat
=
_op
.
tensor
.
concatenate
(
dequantized
,
axis
=
axis
)
return
relay
.
qnn
.
op
.
quantize
(
concat
,
output_scale
,
output_zero_point
,
axis
=
axis
,
out_dtype
=
"uint8"
)
def
_impl
(
inputs
,
_
):
axis
=
inputs
[
1
]
output_scale
=
_expr
.
const
(
inputs
[
2
])
output_zero_point
=
_expr
.
const
(
inputs
[
3
])
num_inputs
=
(
len
(
inputs
)
-
4
)
//
2
dequantized
=
[]
input_scales
=
[]
input_zero_points
=
[]
for
i
in
range
(
0
,
num_inputs
):
inp_scale
=
_expr
.
const
(
inputs
[
4
+
i
*
2
])
inp_zp
=
_expr
.
const
(
inputs
[
4
+
i
*
2
+
1
])
dequantized
.
append
(
relay
.
qnn
.
op
.
dequantize
(
inputs
[
0
][
i
],
inp_scale
,
inp_zp
))
input_scales
.
append
(
_expr
.
const
(
inputs
[
4
+
i
*
2
]))
input_zero_points
.
append
(
_expr
.
const
(
inputs
[
4
+
i
*
2
+
1
]))
concat
=
_op
.
tensor
.
concatenate
(
dequantized
,
axis
=
axis
)
return
relay
.
qnn
.
op
.
quantize
(
concat
,
output_scale
,
output_zero_point
,
axis
=
1
,
out_dtype
=
"uint8"
)
if
fp32_piggy_back
:
return
torch_impl
(
inputs
[
0
],
input_scales
,
input_zero_points
,
output_scale
,
output_zero_point
,
axis
)
return
relay
.
qnn
.
op
.
concatenate
(
inputs
[
0
],
input_scales
,
input_zero_points
,
output_scale
,
output_zero_point
,
axis
)
return
_impl
...
...
@@ -676,15 +717,15 @@ def _mul_scalar():
convert_map
=
{
'aten::quantize_per_tensor'
:
_quantize_per_tensor
(),
'quantized::conv2d_relu'
:
_quantized_conv2d
(
True
),
'quantized::conv2d_relu'
:
_quantized_conv2d
(
with_relu
=
True
),
'aten::dequantize'
:
_dequantize
(),
'quantized::conv2d'
:
_quantized_conv2d
(),
'quantized::add_relu'
:
_binop
(
relay
.
add
,
True
),
'quantized::add'
:
_binop
(
relay
.
add
),
'quantized::mul_relu'
:
_binop
(
relay
.
multiply
,
True
),
'quantized::mul'
:
_binop
(
relay
.
multiply
),
'quantized::add_relu'
:
_binop
(
relay
.
qnn
.
op
.
add
,
with_relu
=
True
),
'quantized::add'
:
_binop
(
relay
.
qnn
.
op
.
add
),
'quantized::mul_relu'
:
_binop
(
relay
.
qnn
.
op
.
mul
,
with_relu
=
True
),
'quantized::mul'
:
_binop
(
relay
.
qnn
.
op
.
mul
),
'quantized::linear'
:
_linear
(),
'quantized::linear_relu'
:
_linear
(
True
),
'quantized::linear_relu'
:
_linear
(
with_relu
=
True
),
'quantized::cat'
:
_cat
(),
'quantized::add_scalar'
:
_add_scalar
(),
'quantized::mul_scalar'
:
_mul_scalar
(),
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment