Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
430cb899
Unverified
Commit
430cb899
authored
Mar 31, 2020
by
Wang Yucheng
Committed by
GitHub
Mar 31, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Torch] Add support for split (#5174)
* [Torch] Add support for split * fix * fix test class
parent
c97e41b0
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
60 additions
and
0 deletions
+60
-0
python/tvm/relay/frontend/pytorch.py
+36
-0
tests/python/frontend/pytorch/test_forward.py
+24
-0
No files found.
python/tvm/relay/frontend/pytorch.py
View file @
430cb899
...
@@ -105,6 +105,36 @@ def _slice():
...
@@ -105,6 +105,36 @@ def _slice():
return
_op
.
transform
.
strided_slice
(
data
,
begin
,
end
,
strides
)
return
_op
.
transform
.
strided_slice
(
data
,
begin
,
end
,
strides
)
return
_impl
return
_impl
def
_split
():
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
split_size
=
int
(
inputs
[
1
])
dim
=
int
(
inputs
[
2
])
split_index
=
split_size
indices
=
[]
while
split_index
<
_infer_shape
(
data
)[
dim
]:
indices
.
append
(
split_index
)
split_index
+=
split_size
return
_op
.
split
(
data
,
indices
,
dim
)
return
_impl
def
_split_with_sizes
():
def
_impl
(
inputs
,
inputs_types
):
data
=
inputs
[
0
]
dim
=
int
(
inputs
[
2
])
split_index
=
0
indices
=
[]
sections
=
_infer_shape
(
inputs
[
1
])
for
i
in
range
(
len
(
sections
)
-
1
):
split_index
+=
sections
[
i
]
indices
.
append
(
split_index
)
return
_op
.
split
(
data
,
indices
,
dim
)
return
_impl
def
_select
():
def
_select
():
def
_impl
(
inputs
,
input_types
):
def
_impl
(
inputs
,
input_types
):
data
=
inputs
[
0
]
data
=
inputs
[
0
]
...
@@ -886,6 +916,8 @@ _convert_map = {
...
@@ -886,6 +916,8 @@ _convert_map = {
"aten::unsqueeze"
:
_unsqueeze
(),
"aten::unsqueeze"
:
_unsqueeze
(),
"aten::cat"
:
_concatenate
(),
"aten::cat"
:
_concatenate
(),
"aten::slice"
:
_slice
(),
"aten::slice"
:
_slice
(),
"aten::split"
:
_split
(),
"aten::split_with_sizes"
:
_split_with_sizes
(),
"aten::select"
:
_select
(),
"aten::select"
:
_select
(),
"aten::relu"
:
_relu
(),
"aten::relu"
:
_relu
(),
"aten::relu_"
:
_relu
(),
"aten::relu_"
:
_relu
(),
...
@@ -1415,6 +1447,10 @@ def from_pytorch(script_module, input_shapes, custom_convert_map=None):
...
@@ -1415,6 +1447,10 @@ def from_pytorch(script_module, input_shapes, custom_convert_map=None):
ret
=
convert_operators
(
_get_operator_nodes
(
graph
.
nodes
()),
outputs
,
ret
=
convert_operators
(
_get_operator_nodes
(
graph
.
nodes
()),
outputs
,
output_index_map
,
ret_name
)
output_index_map
,
ret_name
)
if
isinstance
(
ret
[
0
],
list
):
ret
[
0
]
=
_expr
.
Tuple
(
ret
[
0
])
func
=
tvm
.
relay
.
Function
(
_analysis
.
free_vars
(
ret
[
0
]),
ret
[
0
])
func
=
tvm
.
relay
.
Function
(
_analysis
.
free_vars
(
ret
[
0
]),
ret
[
0
])
return
_module
.
IRModule
.
from_expr
(
func
),
tvm_params
return
_module
.
IRModule
.
from_expr
(
func
),
tvm_params
tests/python/frontend/pytorch/test_forward.py
View file @
430cb899
...
@@ -379,6 +379,29 @@ def test_forward_maxpool1d():
...
@@ -379,6 +379,29 @@ def test_forward_maxpool1d():
stride
=
2
)
.
eval
(),
stride
=
2
)
.
eval
(),
input_data
)
input_data
)
def
test_forward_split
():
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
4
,
10
]
class
Split
(
Module
):
def
__init__
(
self
,
split_size_or_sections
,
dim
):
super
(
Split
,
self
)
.
__init__
()
self
.
split_size_or_sections
=
split_size_or_sections
self
.
dim
=
dim
def
forward
(
self
,
*
args
):
return
torch
.
split
(
args
[
0
],
self
.
split_size_or_sections
,
self
.
dim
)
input_data
=
torch
.
rand
(
input_shape
)
.
float
()
verify_model
(
Split
(
2
,
0
)
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
Split
(
3
,
1
)
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
Split
(
4
,
1
)
.
float
()
.
eval
(),
input_data
=
input_data
)
verify_model
(
Split
([
2
,
3
,
5
],
1
)
.
float
()
.
eval
(),
input_data
=
input_data
)
def
test_forward_avgpool
():
def
test_forward_avgpool
():
torch
.
set_grad_enabled
(
False
)
torch
.
set_grad_enabled
(
False
)
input_shape
=
[
1
,
3
,
10
,
10
]
input_shape
=
[
1
,
3
,
10
,
10
]
...
@@ -1077,6 +1100,7 @@ if __name__ == "__main__":
...
@@ -1077,6 +1100,7 @@ if __name__ == "__main__":
test_forward_expand
()
test_forward_expand
()
test_forward_pow
()
test_forward_pow
()
test_forward_chunk
()
test_forward_chunk
()
test_forward_split
()
test_upsample
()
test_upsample
()
test_to
()
test_to
()
test_adaptive_pool3d
()
test_adaptive_pool3d
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment