Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
425430d4
Commit
425430d4
authored
Oct 08, 2019
by
Wuwei Lin
Committed by
Zhi
Oct 08, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[QNN] Refactor fixed point multiplication in requantize (#4073)
parent
76c23926
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
181 additions
and
104 deletions
+181
-104
src/relay/pass/pattern_util.h
+8
-0
src/relay/qnn/op/requantize.cc
+9
-104
src/relay/qnn/util.cc
+137
-0
src/relay/qnn/util.h
+27
-0
No files found.
src/relay/pass/pattern_util.h
View file @
425430d4
...
...
@@ -336,6 +336,14 @@ inline Expr ZerosLike(Expr e) {
return
CallNode
::
make
(
op
,
{
e
});
}
inline
Expr
Zeros
(
Array
<
IndexExpr
>
shape
,
DataType
dtype
)
{
auto
attrs
=
make_node
<
InitOpAttrs
>
();
attrs
->
shape
=
std
::
move
(
shape
);
attrs
->
dtype
=
std
::
move
(
dtype
);
static
const
Op
&
op
=
Op
::
Get
(
"zeros"
);
return
CallNode
::
make
(
op
,
{},
Attrs
(
attrs
),
{});
}
inline
Expr
OnesLike
(
Expr
e
)
{
static
const
Op
&
op
=
Op
::
Get
(
"ones_like"
);
return
CallNode
::
make
(
op
,
{
e
});
...
...
src/relay/qnn/op/requantize.cc
View file @
425430d4
...
...
@@ -37,50 +37,7 @@ TVM_REGISTER_NODE_TYPE(RequantizeAttrs);
// Lowering of qnn.requantize op
/*
* \brief Convert FP32 representation into fixed point representation.
* \param double_multplier The input FP32 number.
* \return The pair of multiplier and shift for fixed point representation.
* \note Converts a floating point number so that it can be represented by
* integers. The representation is
* float_number = (significand) * 2^(exponent)
*
* The significand is a number between 0.5 and 1. This is represented by
* an integer number. For example, if it is int32, then the decimal point
* exists between bit 31 and 30 from LSB (or between first and second bit
* from the left).
*
* Some examples are
* 0.25 = (0.5) * 2^(-1)
* 0.125 = (0.5) * 2^(-2)
*
* Credit to TFLite reference implementation.
*/
std
::
pair
<
int32_t
,
int32_t
>
GetFixedPointMultiplierShift
(
double
double_multiplier
)
{
int32_t
significand
,
exponent
;
if
(
double_multiplier
==
0.
)
{
significand
=
0
;
exponent
=
0
;
return
std
::
make_pair
(
significand
,
exponent
);
}
// Get the significand and exponent.
double
significand_d
=
std
::
frexp
(
double_multiplier
,
&
exponent
);
// Convert the double significand to int significand, i.e., convert into a
// integer where the decimal point is between bit 31 and 30. This is done by
// multiplying the double value with 2^31 and then casting to int.
significand_d
=
std
::
round
(
significand_d
*
(
1ll
<<
31
));
auto
significand_int64
=
static_cast
<
int64_t
>
(
significand_d
);
CHECK_LE
(
significand_int64
,
(
1ll
<<
31
));
if
(
significand_int64
==
(
1ll
<<
31
))
{
significand_int64
/=
2
;
++
exponent
;
}
CHECK_LE
(
significand_int64
,
std
::
numeric_limits
<
int32_t
>::
max
());
significand
=
static_cast
<
int32_t
>
(
significand_int64
);
return
std
::
make_pair
(
significand
,
exponent
);
}
/*
* \brief Lower requantize to a sequence of ops.
...
...
@@ -93,93 +50,41 @@ std::pair<int32_t, int32_t> GetFixedPointMultiplierShift(double double_multiplie
* and shift. This is useful, if the target device does not support/have
* very expensive floating point computations.
*
* Original compuation is scale_fp32 * quantized_tensor. To convert into
* integer computation, the multiplication with fp32 scalar can be
* replaced by multiplication with an int value and then right shifting
* the result. This approximates the floating point computation with a
* fixed point computation.
*
* The whole computation this can be broken down into following steps
* 1) Calculate the integer multiplier and integer shift.
* 2) Subtract the input integer zero point.
* 3) Multiply the fixed point multiplier with quantized tensor.
* 4) Round the result.
* 5) Right shift the result.
* 6) Add the output zero point.
* 7) Cast to the out_dtype.
* 3) Perform fixed point multiplication.
* 4) Add the output zero point.
* 5) Cast to the out_dtype.
*/
Expr
RequantizeLower
(
const
Expr
&
input_tensor
,
const
RequantizeAttrs
*
param
,
const
Array
<
IndexExpr
>&
input_shape
,
const
DataType
&
out_dtype
)
{
double
double_multiplier
=
param
->
input_scale
/
param
->
output_scale
;
// Choose high precision datatype to be int64. This is for avoiding overflow
// in multiplication of two int32 values.
DataType
hp_dtype
=
Int
(
64
);
// 1) Calculating the integer multiplier and integer shift
int32_t
fixed_point_multiplier
,
shift
;
std
::
tie
(
fixed_point_multiplier
,
shift
)
=
GetFixedPointMultiplierShift
(
double_multiplier
);
int
left_shift
=
shift
>
0
?
shift
:
0
;
int
right_shift
=
shift
>
0
?
0
:
-
shift
;
// 2) Subtract the input_zero_point
auto
tensor
=
Cast
(
input_tensor
,
hp_dtype
);
// 1) Subtract the input_zero_point
if
(
param
->
input_zero_point
!=
0
)
{
auto
input_zp
=
MakeConstantScalar
(
hp_dtype
,
param
->
input_zero_point
);
tensor
=
Subtract
(
tensor
,
input_zp
);
}
// If the input and output scales are same, we can skip the fixed point multiplication.
//
2)
If the input and output scales are same, we can skip the fixed point multiplication.
auto
scaled_int64_t
=
tensor
;
if
(
param
->
input_scale
!=
param
->
output_scale
)
{
// 3) Multiply the integer multiplier
if
(
left_shift
!=
0
)
{
tensor
=
Multiply
(
tensor
,
MakeConstantScalar
(
hp_dtype
,
1
<<
left_shift
));
}
// Perform the multiplication in higher precision.
// The scalar is a fixed point value of int32 where the decimal point is
// between bits 31 and 30. After multiplying with input_tensor, the result is
// in int64 where the decimal point is sitting between bits 31 and 30 (from
// the right, rightmost bit is bit 0). The computation is performed in higher
// precision to avoid overflow in multiplying two int32 values.
Expr
scalar
=
MakeConstantScalar
(
hp_dtype
,
fixed_point_multiplier
);
auto
multiplied_t
=
Multiply
(
tensor
,
scalar
);
// 4) Find the rounding scalar. This depends on where the final decimal point
// sits. As we will be right shifting the multiplied_t, we need to first
// calculate the total_right_shift.
int
total_right_shift
=
right_shift
+
31
;
int64_t
pos_rounding_value
=
(
1ll
<<
(
total_right_shift
-
1
));
tensor
=
multiplied_t
;
Expr
round_scalar
;
if
(
param
->
rounding
==
"UPWARD"
)
{
round_scalar
=
MakeConstantScalar
(
hp_dtype
,
pos_rounding_value
);
}
else
if
(
param
->
rounding
==
"TONEAREST"
)
{
auto
pos_rounder
=
MakeConstantScalar
(
hp_dtype
,
pos_rounding_value
);
auto
neg_rounder
=
MakeConstantScalar
(
hp_dtype
,
pos_rounding_value
-
1
);
auto
pos_rounder_t
=
Full
(
pos_rounder
,
input_shape
,
hp_dtype
);
auto
neg_rounder_t
=
Full
(
neg_rounder
,
input_shape
,
hp_dtype
);
auto
zero
=
MakeConstantScalar
(
hp_dtype
,
0
);
auto
zero_t
=
Full
(
zero
,
input_shape
,
hp_dtype
);
round_scalar
=
Where
(
GreaterEqual
(
tensor
,
zero_t
),
pos_rounder_t
,
neg_rounder_t
);
}
// Add the rounding scalar.
tensor
=
Add
(
tensor
,
round_scalar
);
// 5) Simply right shift the result to get the final output.
scaled_int64_t
=
RightShift
(
tensor
,
MakeConstantScalar
(
hp_dtype
,
total_right_shift
));
scaled_int64_t
=
FixedPointMuliply
(
scaled_int64_t
,
double_multiplier
,
input_shape
,
param
->
rounding
);
}
//
6
) Add the output zero point.
//
3
) Add the output zero point.
auto
shifted_int64_t
=
scaled_int64_t
;
if
(
param
->
output_zero_point
!=
0
)
{
auto
output_zp
=
MakeConstantScalar
(
hp_dtype
,
param
->
output_zero_point
);
shifted_int64_t
=
Add
(
output_zp
,
scaled_int64_t
);
}
//
7
) Clip to the out_dtype min/max.
//
4
) Clip to the out_dtype min/max.
auto
q_min
=
GetQmin
(
out_dtype
);
auto
q_max
=
GetQmax
(
out_dtype
);
auto
clipped_t
=
Clip
(
shifted_int64_t
,
q_min
,
q_max
);
...
...
src/relay/qnn/util.cc
0 → 100644
View file @
425430d4
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file src/relay/qnn/util.cc
* \brief Utility functions for QNN.
*/
#include "util.h"
#include "../pass/pattern_util.h"
namespace
tvm
{
namespace
relay
{
namespace
qnn
{
/*
* \brief Convert FP32 representation into fixed point representation.
* \param double_multplier The input FP32 number.
* \return The pair of multiplier and shift for fixed point representation.
* \note Converts a floating point number so that it can be represented by
* integers. The representation is
* float_number = (significand) * 2^(exponent)
*
* The significand is a number between 0.5 and 1. This is represented by
* an integer number. For example, if it is int32, then the decimal point
* exists between bit 31 and 30 from LSB (or between first and second bit
* from the left).
*
* Some examples are
* 0.25 = (0.5) * 2^(-1)
* 0.125 = (0.5) * 2^(-2)
*
* Credit to TFLite reference implementation.
*/
std
::
pair
<
int32_t
,
int32_t
>
GetFixedPointMultiplierShift
(
double
double_multiplier
)
{
int32_t
significand
,
exponent
;
if
(
double_multiplier
==
0.
)
{
significand
=
0
;
exponent
=
0
;
return
std
::
make_pair
(
significand
,
exponent
);
}
// Get the significand and exponent.
double
significand_d
=
std
::
frexp
(
double_multiplier
,
&
exponent
);
// Convert the double significand to int significand, i.e., convert into a
// integer where the decimal point is between bit 31 and 30. This is done by
// multiplying the double value with 2^31 and then casting to int.
significand_d
=
std
::
round
(
significand_d
*
(
1ll
<<
31
));
auto
significand_int64
=
static_cast
<
int64_t
>
(
significand_d
);
CHECK_LE
(
significand_int64
,
(
1ll
<<
31
));
if
(
significand_int64
==
(
1ll
<<
31
))
{
significand_int64
/=
2
;
++
exponent
;
}
CHECK_LE
(
significand_int64
,
std
::
numeric_limits
<
int32_t
>::
max
());
significand
=
static_cast
<
int32_t
>
(
significand_int64
);
return
std
::
make_pair
(
significand
,
exponent
);
}
Expr
FixedPointMuliply
(
Expr
tensor
,
double
multiplier
,
const
Array
<
IndexExpr
>&
input_shape
,
const
std
::
string
&
rounding
)
{
// Choose high precision datatype to be int64. This is for avoiding overflow
// in multiplication of two int32 values.
DataType
hp_dtype
=
Int
(
64
);
// 1) Calculating the integer multiplier and integer shift
int32_t
fixed_point_multiplier
,
shift
;
std
::
tie
(
fixed_point_multiplier
,
shift
)
=
GetFixedPointMultiplierShift
(
multiplier
);
int
left_shift
=
shift
>
0
?
shift
:
0
;
int
right_shift
=
shift
>
0
?
0
:
-
shift
;
// 2) Multiply the integer multiplier
if
(
left_shift
!=
0
)
{
tensor
=
LeftShift
(
tensor
,
MakeConstantScalar
(
hp_dtype
,
left_shift
));
}
// 3) Perform the multiplication in higher precision.
// The scalar is a fixed point value of int32 where the decimal point is
// between bits 31 and 30. After multiplying with input_tensor, the result
// is in int64 where the decimal point is sitting between bits 31 and 30
// (from the right, rightmost bit is bit 0). The computation is performed in
// higher precision to avoid overflow in multiplying two int32 values.
Expr
scalar
=
MakeConstantScalar
(
hp_dtype
,
fixed_point_multiplier
);
tensor
=
Multiply
(
tensor
,
scalar
);
// 4) Find the rounding scalar. This depends on where the final decimal
// point sits. As we will be right shifting the multiplied_t, we need to
// first calculate the total_right_shift.
int
total_right_shift
=
right_shift
+
31
;
int64_t
pos_rounding_value
=
(
1ll
<<
(
total_right_shift
-
1
));
Expr
round_scalar
;
if
(
rounding
==
"UPWARD"
)
{
round_scalar
=
MakeConstantScalar
(
hp_dtype
,
pos_rounding_value
);
}
else
if
(
rounding
==
"TONEAREST"
)
{
auto
pos_rounder
=
MakeConstantScalar
(
hp_dtype
,
pos_rounding_value
);
auto
neg_rounder
=
MakeConstantScalar
(
hp_dtype
,
pos_rounding_value
-
1
);
auto
pos_rounder_t
=
Full
(
pos_rounder
,
input_shape
,
hp_dtype
);
auto
neg_rounder_t
=
Full
(
neg_rounder
,
input_shape
,
hp_dtype
);
auto
zero_t
=
Zeros
(
input_shape
,
hp_dtype
);
round_scalar
=
Where
(
GreaterEqual
(
tensor
,
zero_t
),
pos_rounder_t
,
neg_rounder_t
);
}
// Add the rounding scalar.
tensor
=
Add
(
tensor
,
round_scalar
);
// 5) Simply right shift the result to get the final output.
tensor
=
RightShift
(
tensor
,
MakeConstantScalar
(
hp_dtype
,
total_right_shift
));
return
tensor
;
}
}
// namespace qnn
}
// namespace relay
}
// namespace tvm
src/relay/qnn/util.h
View file @
425430d4
...
...
@@ -27,6 +27,7 @@
#include <tvm/expr.h>
#include <tvm/relay/expr.h>
#include <tvm/relay/qnn/attrs.h>
#include <limits>
#include <string>
#include <utility>
...
...
@@ -92,6 +93,32 @@ static inline int64_t get_const_int(const tvm::Expr& x) {
return
value_ptr
[
0
];
}
/*
* \brief Fixed point multiplication between integer tensor with floating point
scalar.
* \param tensor The quantized input tensor of dtype int64.
* \param multiplier The scalar multiplier.
* \param input_shape Shape of the input tensor.
* \param rounding "UPWARD" or "TONEAREST". The rounding direction when the value
is midway between" "two representable values.
* \return The sequence of Relay ops for fixed point multiplication.
* \note Original compuation is scale_fp32 * quantized_tensor. To convert into
* integer computation, the multiplication with fp32 scalar can be
* replaced by multiplication with an int value and then right shifting
* the result. This approximates the floating point computation with a
* fixed point computation.
*
* Computation of fixed point multiplication is consist of following
steps:
* 1) Multiply the fixed point multiplier with quantized tensor.
* 2) Round the result.
* 3) Right shift the result
*/
Expr
FixedPointMuliply
(
Expr
tensor
,
double
multiplier
,
const
Array
<
IndexExpr
>&
input_shape
,
const
std
::
string
&
rounding
);
}
// namespace qnn
}
// namespace relay
}
// namespace tvm
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment