Commit 3cab3c44 by Animesh Jain Committed by Yizhi Liu

Relaxing convolution infer checks. (#3511)

- Weight dtype can be different than idtype. So, using the weight tensor to set
the dtype of weight.
- For conv2d NCHWc operator, the weight can be of any dimension. For int8
computation on Intel, it can be 7D. Relaxing the weight type checking.
parent a5acca92
...@@ -83,8 +83,12 @@ bool Conv2DRel(const Array<Type>& types, ...@@ -83,8 +83,12 @@ bool Conv2DRel(const Array<Type>& types,
channels = param->channels; channels = param->channels;
dilated_ksize_y = 1 + (param->kernel_size[0] - 1) * param->dilation[0]; dilated_ksize_y = 1 + (param->kernel_size[0] - 1) * param->dilation[0];
dilated_ksize_x = 1 + (param->kernel_size[1] - 1) * param->dilation[1]; dilated_ksize_x = 1 + (param->kernel_size[1] - 1) * param->dilation[1];
DataType weight_dtype = data->dtype;
if (weight != nullptr) {
weight_dtype = weight->dtype;
}
// assign result to reporter // assign result to reporter
reporter->Assign(types[1], TensorTypeNode::make(wshape, data->dtype)); reporter->Assign(types[1], TensorTypeNode::make(wshape, weight_dtype));
} else { } else {
// use weight to infer the conv shape. // use weight to infer the conv shape.
if (weight == nullptr) return false; if (weight == nullptr) return false;
...@@ -701,7 +705,7 @@ RELAY_REGISTER_OP("nn.contrib_conv2d_NCHWc") ...@@ -701,7 +705,7 @@ RELAY_REGISTER_OP("nn.contrib_conv2d_NCHWc")
.add_argument("data", "Tensor", "The input tensor.") .add_argument("data", "Tensor", "The input tensor.")
.add_argument("weight", "Tensor", "The weight tensor.") .add_argument("weight", "Tensor", "The weight tensor.")
.set_support_level(10) .set_support_level(10)
.add_type_rel("Conv2D", Conv2DRel) .add_type_rel("Conv2DNCHWc", Conv2DWinogradRel<Conv2DAttrs>)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", .set_attr<FInferCorrectLayout>("FInferCorrectLayout",
Conv2DInferCorrectLayout<Conv2DAttrs>); Conv2DInferCorrectLayout<Conv2DAttrs>);
......
...@@ -45,7 +45,6 @@ def test_conv2d_infer_type(): ...@@ -45,7 +45,6 @@ def test_conv2d_infer_type():
(2, 10, 3, 3), "float32") (2, 10, 3, 3), "float32")
# infer by shape of w, mixed precision # infer by shape of w, mixed precision
n, c, h, w = tvm.var("n"), 10, 224, 224 n, c, h, w = tvm.var("n"), 10, 224, 224
x = relay.var("x", relay.TensorType((n, c, h, w), "int8")) x = relay.var("x", relay.TensorType((n, c, h, w), "int8"))
w = relay.var("w", relay.TensorType((2, 10, 3, 3), "int8")) w = relay.var("w", relay.TensorType((2, 10, 3, 3), "int8"))
...@@ -55,6 +54,16 @@ def test_conv2d_infer_type(): ...@@ -55,6 +54,16 @@ def test_conv2d_infer_type():
assert yy.checked_type == relay.TensorType( assert yy.checked_type == relay.TensorType(
(n, 2, 222, 222), "int32") (n, 2, 222, 222), "int32")
# infer shape in case of different dtypes for input and weight.
n, c, h, w = tvm.var("n"), 10, 224, 224
x = relay.var("x", relay.TensorType((n, c, h, w), "uint8"))
w = relay.var("w", relay.TensorType((2, 10, 3, 3), "int8"))
y = relay.nn.conv2d(x, w, out_dtype="int32")
assert "out_dtype=\"int32\"" in y.astext()
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType(
(n, 2, 222, 222), "int32")
# Infer with a different layout # Infer with a different layout
n, c, h, w = 4, 32, 224, 224 n, c, h, w = 4, 32, 224, 224
x = relay.var("x", relay.TensorType((n//4, c//4, h, w, 4, 4), "int8")) x = relay.var("x", relay.TensorType((n//4, c//4, h, w, 4, 4), "int8"))
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment