Commit 3aa2eaed by Animesh Jain Committed by Tianqi Chen

[TOPI] Average Pool2D Bug. (#3607)

* [TOPI] Average Pool2D Bug.

Issue - https://github.com/dmlc/tvm/issues/3581

* Add uint16 test.
parent e0df6e12
...@@ -264,6 +264,25 @@ def _test_pool2d(opfunc, reffunc): ...@@ -264,6 +264,25 @@ def _test_pool2d(opfunc, reffunc):
op_res1 = intrp1.evaluate(func)(data) op_res1 = intrp1.evaluate(func)(data)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5) tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)
def _test_pool2d_int(opfunc, reffunc, dtype):
n, c, h, w = tvm.var("n"), 10, 224, 224
x = relay.var("x", relay.TensorType((n, c, h, w), dtype))
y = opfunc(x, pool_size=(1, 1))
assert "pool_size=" in y.astext()
yy = run_infer_type(y)
assert yy.checked_type == relay.TensorType((n, 10, 224, 224), dtype)
# test execution
dtype = "int32"
dshape = (1, 3, 28, 28)
x = relay.var("x", shape=dshape, dtype=dtype)
y = opfunc(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0))
func = relay.Function([x], y)
data = np.random.random_integers(low=-128, high=128, size=dshape)
ref_res = reffunc(data.reshape(1,3,14,2,14,2), axis=(3,5)).astype(dtype)
for target, ctx in ctx_list():
intrp1 = relay.create_executor("graph", ctx=ctx, target=target)
op_res1 = intrp1.evaluate(func)(data)
tvm.testing.assert_allclose(op_res1.asnumpy(), ref_res, rtol=1e-5, atol=1e-5)
def _test_global_pool2d(opfunc, reffunc): def _test_global_pool2d(opfunc, reffunc):
n, c, h, w = tvm.var("n"), tvm.var("c"), 224, 224 n, c, h, w = tvm.var("n"), tvm.var("c"), 224, 224
...@@ -294,6 +313,8 @@ def _test_global_pool2d(opfunc, reffunc): ...@@ -294,6 +313,8 @@ def _test_global_pool2d(opfunc, reffunc):
def test_pool2d(): def test_pool2d():
_test_pool2d(relay.nn.max_pool2d, np.max) _test_pool2d(relay.nn.max_pool2d, np.max)
_test_pool2d(relay.nn.avg_pool2d, np.mean) _test_pool2d(relay.nn.avg_pool2d, np.mean)
_test_pool2d_int(relay.nn.avg_pool2d, np.mean, 'int32')
_test_pool2d_int(relay.nn.avg_pool2d, np.mean, 'uint16')
_test_global_pool2d(relay.nn.global_max_pool2d, np.max) _test_global_pool2d(relay.nn.global_max_pool2d, np.max)
_test_global_pool2d(relay.nn.global_avg_pool2d, np.mean) _test_global_pool2d(relay.nn.global_avg_pool2d, np.mean)
......
...@@ -130,19 +130,26 @@ inline Tensor pool_impl(const Tensor& x, ...@@ -130,19 +130,26 @@ inline Tensor pool_impl(const Tensor& x,
return tvm::max(temp(indices), { dheight, dwidth }); return tvm::max(temp(indices), { dheight, dwidth });
}, "tensor", "pool_max"); }, "tensor", "pool_max");
} else if (pool_type == kAvgPool) { } else if (pool_type == kAvgPool) {
// Pad the inputs
auto temp = do_pad ? pad(x, pad_before, pad_after, 0, "pad_temp") : x; auto temp = do_pad ? pad(x, pad_before, pad_after, 0, "pad_temp") : x;
auto tavg = [&](const Array<Var>& output, Expr divide_factor) {
// TVM compute for summing the pooling window.
auto pool_sum = tvm::compute(out_shape,
[&](const Array<Var>& output) {
Array<Expr> indices; Array<Expr> indices;
for (const Var& var : output) indices.push_back(var); for (const Var& var : output) indices.push_back(var);
indices.Set(height_axis, output[height_axis] * stride_height + dheight); indices.Set(height_axis, output[height_axis] * stride_height + dheight);
indices.Set(width_axis, output[width_axis] * stride_width + dwidth); indices.Set(width_axis, output[width_axis] * stride_width + dwidth);
return tvm::sum(temp(indices) / divide_factor, { dheight, dwidth }); return tvm::sum(temp(indices), { dheight, dwidth });
}; }, "tensor", "pool_sum");
// TVM compute for dividing the reduced window sum by kernel size.
return tvm::compute(out_shape, return tvm::compute(out_shape,
[&](const Array<Var>& output) { [&](const Array<Var>& output) {
Array<Expr> indices;
for (const Var& var : output) indices.push_back(var);
if (count_include_pad) { if (count_include_pad) {
return tavg(output, kernel_height * kernel_width); return pool_sum(indices) / (kernel_height * kernel_width);
} else { } else {
Expr h_start = output[height_axis] * stride_height - pad_top; Expr h_start = output[height_axis] * stride_height - pad_top;
Expr w_start = output[width_axis] * stride_width - pad_left; Expr w_start = output[width_axis] * stride_width - pad_left;
...@@ -152,9 +159,9 @@ inline Tensor pool_impl(const Tensor& x, ...@@ -152,9 +159,9 @@ inline Tensor pool_impl(const Tensor& x,
w_start = ir::Max::make(w_start, make_const(Int(32), 0)); w_start = ir::Max::make(w_start, make_const(Int(32), 0));
Expr divide_factor = ir::Max::make((h_end - h_start) * (w_end - w_start), Expr divide_factor = ir::Max::make((h_end - h_start) * (w_end - w_start),
make_const(Int(32), 1)); make_const(Int(32), 1));
return tavg(output, divide_factor); return pool_sum(indices) / divide_factor;
} }
}, "tensor", "pool_avg"); }, "tensor", kElementWise);
} else { } else {
LOG(ERROR) << "Unrecognized pool_type: " << pool_type; LOG(ERROR) << "Unrecognized pool_type: " << pool_type;
return x; return x;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment