Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
373a8caa
Commit
373a8caa
authored
Jun 26, 2018
by
Siva
Committed by
Tianqi Chen
Jun 26, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM][TENSORFLOW] Mobilenet support. (#1335)
parent
ca2ad6d4
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
109 additions
and
37 deletions
+109
-37
nnvm/python/nnvm/frontend/tensorflow.py
+35
-17
nnvm/python/nnvm/testing/tf.py
+50
-20
nnvm/tests/python/frontend/tensorflow/test_forward.py
+24
-0
No files found.
nnvm/python/nnvm/frontend/tensorflow.py
View file @
373a8caa
...
...
@@ -35,6 +35,11 @@ class AttrCvt(object):
self
.
_ignores
.
append
(
'use_cudnn_on_gpu'
)
self
.
_ignores
.
append
(
'_node_name'
)
self
.
_ignores
.
append
(
'is_training'
)
# Retain the names
try
:
attrs
[
'name'
]
=
attrs
[
'_node_name'
]
except
KeyError
:
pass
return
AttrConvert
(
self
.
_op_name
,
self
.
_transforms
,
self
.
_excludes
,
self
.
_disables
,
self
.
_ignores
,
self
.
_extras
,
self
.
_custom_check
)(
inputs
,
attrs
,
*
args
)
...
...
@@ -405,13 +410,19 @@ def _concat():
def
_reshape
():
def
_impl
(
inputs
,
attr
,
params
):
pop_node
=
inputs
.
pop
(
1
)
shape_arg
=
params
[
pop_node
.
list_output_names
()[
0
]]
params
.
pop
(
pop_node
.
list_output_names
()[
0
])
return
AttrCvt
(
op_name
=
"reshape"
,
extras
=
{
'shape'
:
tuple
(
shape_arg
.
asnumpy
())},
ignores
=
[
'Tshape'
])(
inputs
,
attr
)
try
:
pop_node
=
inputs
[
1
]
shape_arg
=
params
.
pop
(
pop_node
.
list_output_names
()[
0
])
inputs
.
pop
(
1
)
return
AttrCvt
(
op_name
=
"reshape"
,
extras
=
{
'shape'
:
tuple
(
shape_arg
.
asnumpy
())},
ignores
=
[
'Tshape'
])(
inputs
,
attr
)
except
KeyError
:
return
AttrCvt
(
op_name
=
"reshape_like"
,
ignores
=
[
'Tshape'
])(
inputs
,
attr
)
return
_impl
def
_bias_add
():
...
...
@@ -427,6 +438,18 @@ def _squeeze():
ignores
=
[
'T'
])(
inputs
,
attr
)
return
_impl
def
_fused_batch_norm
():
def
_impl
(
inputs
,
attr
,
params
):
# Tensorflow: (data, gamma, beta, moving_mean, moving_variance)
# NNVM: (data, gamma, beta, moving_mean, moving_varience)
return
AttrCvt
(
op_name
=
'batch_norm'
,
transforms
=
{
'scale_after_normalization'
:
'scale'
,
'variance_epsilon'
:
'epsilon'
},
extras
=
{
'axis'
:
3
},
# Fix axis
ignores
=
[
'data_format'
],
disables
=
[
'momentum'
])(
inputs
,
attr
)
return
_impl
def
_batch_norm
():
def
_impl
(
inputs
,
attr
,
params
):
# Rearrange inputs from
...
...
@@ -445,19 +468,14 @@ def _batch_norm():
def
_relu6
():
def
_impl
(
inputs
,
attr
,
params
):
return
_sym
.
clip
(
inputs
[
0
],
a_min
=
0
,
a_max
=
6
)
return
_sym
.
clip
(
inputs
[
0
],
a_min
=
0
,
a_max
=
6
,
name
=
attr
[
'_node_name'
]
)
return
_impl
def
_shape
():
def
_impl
(
inputs
,
attr
,
params
):
input_shapes
=
attr
[
'_input_shapes'
][
inputs
[
0
]]
# Fix the -1 dimensions to 1
input_shapes
[
0
]
=
[
1
if
x
==
-
1
else
x
for
x
in
input_shapes
[
0
]]
params
[
attr
[
'_node_name'
]]
=
tvm
.
nd
.
array
(
input_shapes
[
0
])
return
_sym
.
Variable
(
name
=
attr
[
'_node_name'
],
shape
=
params
[
attr
[
'_node_name'
]]
.
shape
)
# Result of this operator is prominently used by reshape operator.
# Just pass the input as it is so that reshape_like can be used there.
return
inputs
[
0
]
return
_impl
# compatible operators that do NOT require any conversion.
...
...
@@ -491,7 +509,7 @@ _convert_map = {
'Add'
:
_elemwise
(
'add'
),
'Rsqrt'
:
_rsqrt
(),
'Squeeze'
:
_squeeze
(),
'FusedBatchNorm'
:
_batch_norm
(),
'FusedBatchNorm'
:
_
fused_
batch_norm
(),
'Relu6'
:
_relu6
(),
'DepthwiseConv2dNative'
:
_depthwise_conv
(),
'Shape'
:
_shape
(),
...
...
nnvm/python/nnvm/testing/tf.py
View file @
373a8caa
...
...
@@ -153,6 +153,35 @@ def read_normalized_tensor_from_image_file(file_name,
np_array
=
normalized
.
eval
()
return
np_array
def
get_workload
(
model_path
):
""" Import workload from frozen protobuf
Parameters
----------
model_path: str
model_path on remote repository to download from.
Returns
-------
graph_def: graphdef
graph_def is the tensorflow workload for mobilenet.
"""
repo_base
=
'https://github.com/dmlc/web-data/raw/master/tensorflow/models/'
model_name
=
os
.
path
.
basename
(
model_path
)
model_url
=
os
.
path
.
join
(
repo_base
,
model_path
)
from
mxnet.gluon.utils
import
download
download
(
model_url
,
model_name
)
# Creates graph from saved graph_def.pb.
with
tf
.
gfile
.
FastGFile
(
os
.
path
.
join
(
"./"
,
model_name
),
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
graph
=
tf
.
import_graph_def
(
graph_def
,
name
=
''
)
return
graph_def
def
get_workload_inception_v3
():
""" Import Inception V3 workload from frozen protobuf
...
...
@@ -168,23 +197,15 @@ def get_workload_inception_v3():
"""
repo_base
=
'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV3/'
model_
name
=
'
inception_v3_2016_08_28_frozen-with_shapes.pb'
model_url
=
os
.
path
.
join
(
repo_base
,
model_name
)
model_
path
=
'InceptionV3/
inception_v3_2016_08_28_frozen-with_shapes.pb'
image_name
=
'elephant-299.jpg'
image_url
=
os
.
path
.
join
(
repo_base
,
image_name
)
from
mxnet.gluon.utils
import
download
download
(
model_url
,
model_name
)
download
(
image_url
,
image_name
)
normalized
=
read_normalized_tensor_from_image_file
(
os
.
path
.
join
(
"./"
,
image_name
))
# Creates graph from saved graph_def.pb.
with
tf
.
gfile
.
FastGFile
(
os
.
path
.
join
(
"./"
,
model_name
),
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
graph
=
tf
.
import_graph_def
(
graph_def
,
name
=
''
)
return
(
normalized
,
graph_def
)
return
(
normalized
,
get_workload
(
model_path
))
def
get_workload_inception_v1
():
""" Import Inception V1 workload from frozen protobuf
...
...
@@ -203,13 +224,11 @@ def get_workload_inception_v1():
"""
repo_base
=
'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'
model_name
=
'classify_image_graph_def-with_shapes.pb'
model_url
=
os
.
path
.
join
(
repo_base
,
model_name
)
model_path
=
'InceptionV1/classify_image_graph_def-with_shapes.pb'
image_name
=
'elephant-299.jpg'
image_url
=
os
.
path
.
join
(
repo_base
,
image_name
)
from
mxnet.gluon.utils
import
download
download
(
model_url
,
model_name
)
download
(
image_url
,
image_name
)
if
not
tf
.
gfile
.
Exists
(
os
.
path
.
join
(
"./"
,
image_name
)):
...
...
@@ -221,9 +240,20 @@ def get_workload_inception_v1():
tvm_data
=
Image
.
open
(
os
.
path
.
join
(
"./"
,
image_name
))
.
resize
((
299
,
299
))
tvm_data
=
np
.
array
(
tvm_data
)
# Creates graph from saved graph_def.pb.
with
tf
.
gfile
.
FastGFile
(
os
.
path
.
join
(
"./"
,
model_name
),
'rb'
)
as
f
:
graph_def
=
tf
.
GraphDef
()
graph_def
.
ParseFromString
(
f
.
read
())
graph
=
tf
.
import_graph_def
(
graph_def
,
name
=
''
)
return
(
image_data
,
tvm_data
,
graph_def
)
return
(
image_data
,
tvm_data
,
get_workload
(
model_path
))
def
get_workload_mobilenet
():
""" Import mobilenet workload from frozen protobuf
Parameters
----------
Nothing.
Returns
-------
graph_def: graphdef
graph_def is the tensorflow workload for mobilenet.
"""
return
get_workload
(
"MobilenetV1/mobilenet_v1_1.0_224_frozen-with-shapes.pb"
)
nnvm/tests/python/frontend/tensorflow/test_forward.py
View file @
373a8caa
...
...
@@ -407,6 +407,29 @@ def test_forward_inception_v1():
np
.
testing
.
assert_allclose
(
tf_output
,
tvm_output
,
rtol
=
2e-2
,
atol
=
2e-2
)
#######################################################################
# Mobilenet
# ---------
def
test_forward_mobilenet
():
'''test mobilenet model'''
with
tf
.
Graph
()
.
as_default
():
graph_def
=
nnvm
.
testing
.
tf
.
get_workload_mobilenet
()
# Call the utility to import the graph definition into default graph.
graph_def
=
nnvm
.
testing
.
tf
.
ProcessGraphDefParam
(
graph_def
)
data
=
np
.
random
.
uniform
(
size
=
(
1
,
224
,
224
,
3
))
.
astype
(
'float32'
)
out_node
=
'MobilenetV1/Predictions/Reshape_1'
with
tf
.
Session
()
as
sess
:
tf_output
=
run_tf_graph
(
sess
,
data
,
'input:0'
,
out_node
+
':0'
)
out_shape
=
tf_output
.
shape
tvm_output
=
run_tvm_graph
(
graph_def
,
data
,
'input'
,
out_shape
,
'float32'
)
top_tvm
=
np
.
squeeze
(
tvm_output
)
.
argsort
()[
-
10
:][::
-
1
]
top_tf
=
np
.
squeeze
(
tf_output
)
.
argsort
()[
-
10
:][::
-
1
]
np
.
testing
.
assert_allclose
(
np
.
squeeze
(
tvm_output
),
np
.
squeeze
(
tf_output
),
rtol
=
1e-5
,
atol
=
1e-5
)
#######################################################################
# Main
# ----
if
__name__
==
'__main__'
:
...
...
@@ -419,3 +442,4 @@ if __name__ == '__main__':
test_forward_multi_input
()
test_forward_inception_v3
()
test_forward_inception_v1
()
test_forward_mobilenet
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment