Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
35a7eac5
Commit
35a7eac5
authored
Oct 10, 2017
by
Joshua Z. Zhang
Committed by
Tianqi Chen
May 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Frontend] Onnx improvement (#165)
* fix recently released layers * fix fc layers with partial infer_shape
parent
51e78516
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
37 additions
and
17 deletions
+37
-17
nnvm/python/nnvm/frontend/onnx.py
+37
-17
No files found.
nnvm/python/nnvm/frontend/onnx.py
View file @
35a7eac5
...
...
@@ -3,6 +3,8 @@
from
__future__
import
absolute_import
as
_abs
import
tvm
from
..
import
symbol
as
_sym
from
..
import
graph
as
_graph
from
..
compiler
import
graph_util
from
.common
import
Renamer
,
AttrConverter
as
AttrCvt
__all__
=
[
'from_onnx'
]
...
...
@@ -60,9 +62,9 @@ def _pooling(name):
'kernel_shape'
:
'pool_size'
,
'pads'
:
(
'padding'
,
(
0
,
0
),
_revert_caffe2_pad
)},
# very weird attributes here in onnx, force check
exclud
es
=
[
'dilations'
],
ignor
es
=
[
'dilations'
],
# TODO(zhreshold): make sure ceil_mode in onnx, and layout?
extras
=
{
'ceil_mode'
:
Tru
e
},
extras
=
{
'ceil_mode'
:
Fals
e
},
custom_check
=
_dimension_constraint
())
def
_conv
():
...
...
@@ -90,7 +92,7 @@ def _batch_norm():
return
AttrCvt
(
op_name
=
'batch_norm'
,
disables
=
[
'momentum'
],
ignores
=
[
'spatial'
,
'is_test'
])
ignores
=
[
'spatial'
,
'is_test'
,
'consumed_inputs'
])
# compatible operators that do NOT require any conversion.
...
...
@@ -100,6 +102,7 @@ _identity_list = []
_convert_map
=
{
# defs/experimental
'FC'
:
AttrCvt
(
'dense'
,
ignores
=
[
'axis'
,
'axis_w'
]),
'SpatialBN'
:
_batch_norm
(),
# defs/generator
# 'Constant'
...
...
@@ -200,7 +203,7 @@ def _convert_operator(op_name, attrs, identity_list=None, convert_map=None):
elif
op_name
in
convert_map
:
op_name
,
attrs
=
convert_map
[
op_name
](
attrs
)
else
:
_raise_not_supported
(
'Operator: '
+
op_name
)
raise
NotImplementedError
(
"Operator {} not implemented."
.
format
(
op_name
)
)
op
=
getattr
(
_sym
,
op_name
,
None
)
if
not
op
:
raise
RuntimeError
(
"Unable to map op_name {} to nnvm.sym"
.
format
(
op_name
))
...
...
@@ -267,10 +270,11 @@ class GraphProto(object):
new_attr
=
self
.
_fix_channels
(
new_op
,
new_attr
,
list
(
node
.
input
))
self
.
_fix_bias_shape
(
node
.
op_type
,
graph
.
node
[
idx
-
1
]
.
op_type
,
node
.
input
)
op
=
new_op
(
name
=
node_name
,
*
inputs
,
**
new_attr
)
assert
len
(
node
.
output
)
==
len
(
op
.
list_output_names
()),
(
"Number of output mismatch {} vs {}."
.
format
(
len
(
node
.
output
),
len
(
op
.
list_output_names
())))
for
k
,
i
in
zip
(
list
(
node
.
output
),
range
(
len
(
node
.
output
))):
node_output
=
self
.
_fix_outputs
(
op_name
,
node
.
output
)
assert
len
(
node_output
)
==
len
(
op
.
list_output_names
()),
(
"Number of output mismatch {} vs {} in {}."
.
format
(
len
(
node_output
),
len
(
op
.
list_output_names
()),
op_name
))
for
k
,
i
in
zip
(
list
(
node_output
),
range
(
len
(
node_output
))):
self
.
_nodes
[
k
]
=
op
[
i
]
# now return the outputs
out
=
[
self
.
_nodes
[
i
]
for
i
in
graph
.
output
]
...
...
@@ -310,6 +314,15 @@ class GraphProto(object):
raise
ValueError
(
"Cannot parse attribute:
\n
{}
\n
."
.
format
(
a
))
return
attrs
def
_fix_outputs
(
self
,
op
,
outputs
):
"""A hack to handle dropout or similar operator that have more than one out
in ONNX.
"""
if
op
==
'Dropout'
:
assert
len
(
outputs
)
==
2
,
"ONNX have two outputs for dropout layer."
outputs
=
outputs
[:
-
1
]
return
outputs
def
_fix_bias
(
self
,
op
,
attrs
,
num_inputs
):
"""A hack for 'use_bias' attribute since onnx don't provide this attribute,
we have to check the number of inputs to decide it."""
...
...
@@ -340,17 +353,24 @@ class GraphProto(object):
"""
if
op
not
in
[
_sym
.
conv2d
,
_sym
.
conv2d_transpose
,
_sym
.
dense
]:
return
attrs
weight_name
=
self
.
_renames
[
inputs
[
1
]]
if
not
weight_name
in
self
.
_params
:
raise
ValueError
(
"Unable to get channels/units attr from onnx graph."
)
if
inputs
[
1
]
not
in
self
.
_renames
:
assert
inputs
[
1
]
in
self
.
_nodes
g
=
_graph
.
create
(
self
.
_nodes
[
inputs
[
1
]])
shape_dict
=
{
k
:
v
.
shape
for
k
,
v
in
self
.
_params
.
items
()}
_
,
out_shapes
=
graph_util
.
infer_shape
(
g
,
**
shape_dict
)
channels
=
out_shapes
[
0
][
0
]
else
:
wshape
=
self
.
_params
[
weight_name
]
.
shape
assert
len
(
wshape
)
>=
2
,
"Weights shape is invalid: {}"
.
format
(
wshape
)
channels
=
wshape
[
0
]
if
op
in
[
_sym
.
dense
]:
attrs
[
'units'
]
=
channels
weight_name
=
self
.
_renames
[
inputs
[
1
]]
if
not
weight_name
in
self
.
_params
:
raise
ValueError
(
"Unable to get channels/units attr from onnx graph."
)
else
:
attrs
[
'channels'
]
=
channels
wshape
=
self
.
_params
[
weight_name
]
.
shape
assert
len
(
wshape
)
>=
2
,
"Weights shape is invalid: {}"
.
format
(
wshape
)
channels
=
wshape
[
0
]
if
op
in
[
_sym
.
dense
]:
attrs
[
'units'
]
=
channels
else
:
attrs
[
'channels'
]
=
channels
return
attrs
def
from_onnx
(
graph
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment