Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
34630e81
Commit
34630e81
authored
Jun 07, 2018
by
MORITA Kazutaka
Committed by
Tianqi Chen
Jun 06, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[NNVM][FRONTEND][Keras] Support for reusing layers (#1192)
parent
eeb03c71
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
78 additions
and
31 deletions
+78
-31
nnvm/python/nnvm/frontend/keras.py
+27
-19
nnvm/tests/python/frontend/keras/test_forward.py
+48
-9
tutorials/nnvm/from_keras.py
+3
-3
No files found.
nnvm/python/nnvm/frontend/keras.py
View file @
34630e81
...
...
@@ -152,8 +152,8 @@ def _convert_convolution(insym, keras_layer, symtab):
pass
# we insert a separate pad operator
elif
keras_layer
.
padding
==
'same'
:
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
in_h
=
keras_layer
.
input
_shape
[
1
]
in_w
=
keras_layer
.
input
_shape
[
2
]
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
kernel_h
,
stride_h
)
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
kernel_w
,
stride_w
)
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
((
0
,
0
),
(
0
,
0
),
(
pad_t
,
pad_b
),
(
pad_l
,
pad_r
)))
...
...
@@ -192,8 +192,8 @@ def _convert_separable_convolution(insym, keras_layer, symtab):
pass
# we insert a separate pad operator
elif
keras_layer
.
padding
==
'same'
:
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
in_h
=
keras_layer
.
input
_shape
[
1
]
in_w
=
keras_layer
.
input
_shape
[
2
]
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
kernel_h
,
stride_h
)
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
kernel_w
,
stride_w
)
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
(
...
...
@@ -249,8 +249,8 @@ def _convert_pooling(insym, keras_layer, symtab):
pass
# we insert a separate pad operator
elif
keras_layer
.
padding
==
'same'
:
in_h
=
keras_layer
.
input
.
shape
[
1
]
.
value
in_w
=
keras_layer
.
input
.
shape
[
2
]
.
value
in_h
=
keras_layer
.
input
_shape
[
1
]
in_w
=
keras_layer
.
input
_shape
[
2
]
pad_t
,
pad_b
=
_get_pad_pair
(
in_h
,
pool_h
,
stride_h
)
pad_l
,
pad_r
=
_get_pad_pair
(
in_w
,
pool_w
,
stride_w
)
insym
=
_sym
.
pad
(
data
=
insym
,
pad_width
=
(
...
...
@@ -475,25 +475,33 @@ def from_keras(model):
symtab
=
SymbolTable
()
for
keras_layer
in
model
.
layers
:
if
isinstance
(
keras_layer
,
keras
.
engine
.
topology
.
InputLayer
):
keras_layer
.
name
=
'data'
symtab
.
get_var
(
keras_layer
.
name
,
must_contain
=
False
)
else
:
predecessors
=
[]
inbound_nodes
=
keras_layer
.
inbound_nodes
if
hasattr
(
keras_layer
,
'inbound_nodes'
)
\
else
keras_layer
.
_inbound_nodes
if
hasattr
(
keras_layer
,
'_inbound_nodes'
)
\
else
None
if
inbound_nodes
is
None
:
raise
TypeError
(
"Unknown layer type or unsupported Keras version : {}"
.
format
(
keras_layer
))
for
node
in
inbound_nodes
:
for
pred
in
node
.
inbound_layers
:
predecessors
.
append
(
pred
.
name
)
if
len
(
predecessors
)
==
1
:
insym
=
symtab
.
get_var
(
predecessors
[
0
],
must_contain
=
True
)
else
:
insym
=
[
symtab
.
get_var
(
pred
,
must_contain
=
True
)
for
pred
in
predecessors
]
keras_op_to_nnvm
(
insym
,
keras_layer
,
keras_layer
.
name
,
symtab
)
returns
=
[
symtab
.
get_var
(
i
.
name
,
must_contain
=
False
)
for
i
in
model
.
output_layers
]
for
my_idx
,
node
in
enumerate
(
inbound_nodes
):
insym
=
[]
# Since Keras allows creating multiple layers from the same name instance,
# we append node index to the symbol name to make it unique.
# The one exception is InputLayer. Changing input variable names after conversion
# would confuse users, so we should keep them as far as possible. Fortunately,
# they are named uniquely to input_1, input_2, input_3 ... by default.
for
pred_idx
,
pred
in
zip
(
node
.
node_indices
,
node
.
inbound_layers
):
if
isinstance
(
pred
,
keras
.
engine
.
topology
.
InputLayer
):
_sym
=
symtab
.
get_var
(
pred
.
name
,
must_contain
=
True
)
else
:
_sym
=
symtab
.
get_var
(
pred
.
name
+
':'
+
str
(
pred_idx
),
must_contain
=
True
)
insym
.
append
(
_sym
)
if
len
(
insym
)
==
1
:
insym
=
insym
[
0
]
keras_op_to_nnvm
(
insym
,
keras_layer
,
keras_layer
.
name
+
':'
+
str
(
my_idx
),
symtab
)
outsym
=
symtab
.
get_var
(
model
.
output_layers
[
0
]
.
name
+
':0'
)
tvmparams
=
{
k
:
tvm
.
nd
.
array
(
np
.
array
(
v
,
dtype
=
np
.
float32
))
for
k
,
v
in
symtab
.
params
.
items
()}
return
returns
[
0
]
,
tvmparams
return
outsym
,
tvmparams
nnvm/tests/python/frontend/keras/test_forward.py
View file @
34630e81
...
...
@@ -14,28 +14,31 @@ set_session(tf.Session(config=config))
def
verify_keras_frontend
(
keras_model
):
in_shape
=
[
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
keras_model
.
input_layers
[
0
]
.
input
.
shape
]
in_shapes
=
[]
for
layer
in
keras_model
.
input_layers
:
in_shapes
.
append
(
tuple
(
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
layer
.
input
.
shape
))
out_shape
=
[
dim
.
value
if
dim
.
value
is
not
None
else
1
for
dim
in
keras_model
.
output_layers
[
0
]
.
output
.
shape
]
def
get_keras_output
(
x
,
dtype
=
'float32'
):
return
keras_model
.
predict
(
x
)
def
get_keras_output
(
x
s
,
dtype
=
'float32'
):
return
keras_model
.
predict
(
x
s
)
def
get_tvm_output
(
x
,
target
,
ctx
,
input_name
=
'data'
,
dtype
=
'float32'
):
def
get_tvm_output
(
x
s
,
target
,
ctx
,
dtype
=
'float32'
):
sym
,
params
=
nnvm
.
frontend
.
from_keras
(
keras_model
)
shape_dict
=
{
input_name
:
x
.
shape
}
shape_dict
=
{
name
:
x
.
shape
for
(
name
,
x
)
in
zip
(
keras_model
.
input_names
,
xs
)
}
with
nnvm
.
compiler
.
build_config
(
opt_level
=
2
):
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
sym
,
target
,
shape_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
x
.
astype
(
dtype
)))
for
name
,
x
in
zip
(
keras_model
.
input_names
,
xs
):
m
.
set_input
(
name
,
tvm
.
nd
.
array
(
x
.
astype
(
dtype
)))
m
.
set_input
(
**
params
)
m
.
run
()
out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
out_shape
,
dtype
))
return
out
.
asnumpy
()
x
=
np
.
random
.
uniform
(
size
=
in_shape
)
keras_out
=
get_keras_output
(
x
)
x
s
=
[
np
.
random
.
uniform
(
size
=
shape
)
for
shape
in
in_shapes
]
keras_out
=
get_keras_output
(
x
s
)
for
target
,
ctx
in
ctx_list
():
tvm_out
=
get_tvm_output
(
x
.
transpose
([
0
,
3
,
1
,
2
])
,
target
,
ctx
)
tvm_out
=
get_tvm_output
(
[
x
.
transpose
([
0
,
3
,
1
,
2
])
for
x
in
xs
]
,
target
,
ctx
)
np
.
testing
.
assert_allclose
(
keras_out
,
tvm_out
,
rtol
=
1e-5
,
atol
=
1e-5
)
...
...
@@ -166,6 +169,39 @@ def test_forward_mobilenet():
verify_keras_frontend
(
keras_model
)
def
test_forward_multi_inputs
():
data1
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
data2
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data1
)
y
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data2
)
z
=
keras
.
layers
.
add
([
x
,
y
])
z
=
keras
.
layers
.
GlobalAveragePooling2D
()(
z
)
keras_model
=
keras
.
models
.
Model
([
data1
,
data2
],
z
)
verify_keras_frontend
(
keras_model
)
def
test_forward_reuse_layers
():
# reuse conv2d
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
conv2d
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)
x
=
conv2d
(
data
)
y
=
conv2d
(
data
)
z
=
keras
.
layers
.
add
([
x
,
y
])
z
=
keras
.
layers
.
GlobalAveragePooling2D
()(
z
)
keras_model
=
keras
.
models
.
Model
(
data
,
z
)
verify_keras_frontend
(
keras_model
)
# reuse add
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
3
))
x
=
keras
.
layers
.
Conv2D
(
8
,
(
3
,
3
),
padding
=
"same"
)(
data
)
add
=
keras
.
layers
.
Add
()
x
=
add
([
x
,
x
])
x
=
add
([
x
,
x
])
z
=
keras
.
layers
.
GlobalAveragePooling2D
()(
x
)
keras_model
=
keras
.
models
.
Model
(
data
,
z
)
verify_keras_frontend
(
keras_model
)
if
__name__
==
'__main__'
:
test_forward_elemwise_add
()
test_forward_softmax
()
...
...
@@ -182,3 +218,6 @@ if __name__ == '__main__':
test_forward_xception
()
test_forward_resnet50
()
test_forward_mobilenet
()
test_forward_multi_inputs
()
test_forward_reuse_layers
()
tutorials/nnvm/from_keras.py
View file @
34630e81
...
...
@@ -63,7 +63,7 @@ plt.show()
# input preprocess
data
=
np
.
array
(
img
)[
np
.
newaxis
,
:]
.
astype
(
'float32'
)
data
=
preprocess_input
(
data
)
.
transpose
([
0
,
3
,
1
,
2
])
print
(
'
data
'
,
data
.
shape
)
print
(
'
input_1
'
,
data
.
shape
)
######################################################################
# Compile the model on NNVM
...
...
@@ -74,7 +74,7 @@ print('data', data.shape)
sym
,
params
=
nnvm
.
frontend
.
from_keras
(
keras_resnet50
)
# compile the model
target
=
'cuda'
shape_dict
=
{
'
data
'
:
data
.
shape
}
shape_dict
=
{
'
input_1
'
:
data
.
shape
}
with
nnvm
.
compiler
.
build_config
(
opt_level
=
2
):
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
sym
,
target
,
shape_dict
,
params
=
params
)
...
...
@@ -86,7 +86,7 @@ from tvm.contrib import graph_runtime
ctx
=
tvm
.
gpu
(
0
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
'
data
'
,
tvm
.
nd
.
array
(
data
.
astype
(
'float32'
)))
m
.
set_input
(
'
input_1
'
,
tvm
.
nd
.
array
(
data
.
astype
(
'float32'
)))
m
.
set_input
(
**
params
)
# execute
m
.
run
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment