Unverified Commit 328dc73a by Neo Chien Committed by GitHub

[DOC][TUTORIAL] Fix typo for deploy_model_on_android.py (#5123)

parent 05b0f7e0
......@@ -40,7 +40,7 @@ from tvm.contrib.download import download_testdata
######################################################################
# Setup Environment
# --------------------
# -----------------
# Since there are many required packages for Android, it is recommended to use the official Docker Image.
#
# First, to build and run Docker Image, we can run the following command.
......@@ -79,7 +79,7 @@ from tvm.contrib.download import download_testdata
#
# .. code-block:: bash
#
# echo 'export PYTHONPATH=/workspace/python:/workspacem/topi/python:/workspace/vta/python:${PYTHONPATH}' >> ~/.bashrc
# echo 'export PYTHONPATH=/workspace/python:/workspace/topi/python:/workspace/vta/python:${PYTHONPATH}' >> ~/.bashrc
# source ~/.bashrc
#################################################################
......@@ -103,7 +103,7 @@ from tvm.contrib.download import download_testdata
#################################################################
# Register Android device to RPC Tracker
# ---------------------------------------
# --------------------------------------
# Now we can register our Android device to the tracker.
#
# Follow this `readme page <https://github.com/apache/incubator-tvm/tree/master/apps/android_rpc>`_ to
......@@ -186,7 +186,7 @@ from tvm.contrib.download import download_testdata
######################################################################
# Load pretrained keras model
# ----------------------------
# ---------------------------
# We load a pretrained MobileNetV2(alpha=0.5) classification model provided by keras.
keras.backend.clear_session() # Destroys the current TF graph and creates a new one.
weights_url = ''.join(['https://github.com/JonathanCMitchell/',
......@@ -231,7 +231,7 @@ with open(synset_path) as f:
######################################################################
# Compile the model with relay
# ---------------------------------------------
# ----------------------------
# If we run the example on our x86 server for demonstration, we can simply
# set it as :code:`llvm`. If running it on the Android device, we need to
# specify its instruction set. Set :code:`local_demo` to False if you want
......@@ -279,7 +279,7 @@ lib.export_library(lib_fname, fcompile)
######################################################################
# Deploy the Model Remotely by RPC
# ---------------------------------------------
# --------------------------------
# With RPC, you can deploy the model remotely from your host machine
# to the remote android device.
......@@ -313,7 +313,7 @@ module = runtime.create(graph, rlib, ctx)
######################################################################
# Execute on TVM
# ---------------------------------------------
# --------------
# set parameter (upload params to the remote device. This may take a while)
module.set_input(**params)
......@@ -336,7 +336,7 @@ print('Mean inference time (std dev): %.2f ms (%.2f ms)' % (np.mean(prof_res),
######################################################################
# Sample Output
# ---------------------------------------------
# -------------
# The following is the result of 'cpu', 'opencl' and 'vulkan' using Adreno 530 on Snapdragon 820
#
# Although we can run on a GPU, it is slower than CPU.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment