Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
30f09bea
Commit
30f09bea
authored
Jul 04, 2018
by
Siva
Committed by
Tianqi Chen
Jul 04, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[AVG POOL] Asymmetric padding (SAME) support. (#1346)
parent
40ac2064
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
156 additions
and
85 deletions
+156
-85
nnvm/include/nnvm/top/nn.h
+8
-2
nnvm/python/nnvm/frontend/tensorflow.py
+4
-13
nnvm/src/top/nn/pooling.cc
+57
-12
nnvm/tests/python/frontend/tensorflow/test_forward.py
+29
-7
topi/include/topi/nn/pooling.h
+16
-16
topi/python/topi/nn/pooling.py
+2
-2
topi/tests/python/test_topi_pooling.py
+20
-17
topi/tests/python_cpp/test_topi_pooling.py
+20
-16
No files found.
nnvm/include/nnvm/top/nn.h
View file @
30f09bea
...
...
@@ -239,7 +239,10 @@ struct MaxPool2DParam : public dmlc::Parameter<MaxPool2DParam> {
.
describe
(
"Specifies the strides of the convolution."
);
DMLC_DECLARE_FIELD
(
padding
).
set_default
(
TShape
({
0
,
0
}))
.
describe
(
"If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points"
);
"Padding support both symmetric and asymmetric as"
"one int : same padding used on all sides"
"two int : bottom, right will use same padding as top, left"
"four int : padding width in the order of (top, left, bottom, right)"
);
DMLC_DECLARE_FIELD
(
layout
).
set_default
(
"NCHW"
)
.
describe
(
"Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
...
...
@@ -266,7 +269,10 @@ struct AvgPool2DParam : public dmlc::Parameter<AvgPool2DParam> {
.
describe
(
"Specifies the strides of the convolution."
);
DMLC_DECLARE_FIELD
(
padding
).
set_default
(
TShape
({
0
,
0
}))
.
describe
(
"If padding is non-zero, then the input is implicitly zero-padded"
"on both sides for padding number of points"
);
"Padding support both symmetric and asymmetric as"
"one int : same padding used on all sides"
"two int : bottom, right will use same padding as top, left"
"four int : padding width in the order of (top, left, bottom, right)"
);
DMLC_DECLARE_FIELD
(
layout
).
set_default
(
"NCHW"
)
.
describe
(
"Dimension ordering of data and weight. Can be 'NCHW', 'NHWC', etc."
"'N', 'C', 'H', 'W' stands for batch, channel, height, and width"
...
...
nnvm/python/nnvm/frontend/tensorflow.py
View file @
30f09bea
...
...
@@ -137,22 +137,13 @@ def _pooling(name):
pad_v
=
_get_pad_pair
(
in_h
,
kernel_h
,
stride_h
)
pad_h
=
_get_pad_pair
(
in_w
,
kernel_w
,
stride_w
)
if
attr
[
'data_format'
]
==
'NHWC'
:
inputs
[
0
]
=
_sym
.
pad
(
data
=
inputs
[
0
],
pad_width
=
((
0
,
0
),
(
pad_v
[
0
],
pad_v
[
1
]),
(
pad_h
[
0
],
pad_h
[
1
]),
(
0
,
0
)))
else
:
inputs
[
0
]
=
_sym
.
pad
(
data
=
inputs
[
0
],
pad_width
=
((
0
,
0
),
(
0
,
0
),
(
pad_v
[
0
],
pad_v
[
1
]),
(
pad_h
[
0
],
pad_h
[
1
])))
attr
[
'padding'
]
=
[
0
,
0
]
attr
[
'padding'
]
=
[
pad_v
[
0
],
pad_h
[
0
],
pad_v
[
1
],
pad_h
[
1
]]
else
:
raise
TypeError
(
"Unsupported padding type : {}"
.
format
(
attr
[
'padding'
]))
if
name
==
"avg_pool"
:
attr
[
'count_include_pad'
]
=
False
return
AttrCvt
(
op_name
=
_dimension_picker
(
name
),
transforms
=
{
...
...
nnvm/src/top/nn/pooling.cc
View file @
30f09bea
/*!
* Copyright (c) 2017 by Contributors
* \file pooling.cc
...
...
@@ -44,23 +45,39 @@ inline bool Pool2DInferShape(const nnvm::NodeAttrs& attrs,
const
auto
hidx
=
layout
.
indexof
(
'H'
);
const
auto
widx
=
layout
.
indexof
(
'W'
);
dim_t
pad_h
,
pad_w
;
if
(
param
.
padding
.
ndim
()
==
1
)
{
pad_h
=
param
.
padding
[
0
]
*
2
;
pad_w
=
param
.
padding
[
0
]
*
2
;
}
else
if
(
param
.
padding
.
ndim
()
==
2
)
{
// (top, left)
pad_h
=
param
.
padding
[
0
]
*
2
;
pad_w
=
param
.
padding
[
1
]
*
2
;
}
else
if
(
param
.
padding
.
ndim
()
==
4
)
{
// (top, left, bottom, right)
pad_h
=
param
.
padding
[
0
]
+
param
.
padding
[
2
];
pad_w
=
param
.
padding
[
1
]
+
param
.
padding
[
3
];
}
else
{
return
false
;
}
TShape
oshape
=
dshape
;
CHECK
(
param
.
pool_size
[
0
]
<=
dshape
[
hidx
]
+
2
*
param
.
padding
[
0
]
)
CHECK
(
param
.
pool_size
[
0
]
<=
dshape
[
hidx
]
+
pad_h
)
<<
"pool size ("
<<
param
.
pool_size
[
0
]
<<
") exceeds input ("
<<
dshape
[
hidx
]
<<
" padded to "
<<
(
dshape
[
hidx
]
+
2
*
param
.
padding
[
0
]
)
<<
")"
;
CHECK
(
param
.
pool_size
[
1
]
<=
dshape
[
widx
]
+
2
*
param
.
padding
[
1
]
)
<<
" padded to "
<<
(
dshape
[
hidx
]
+
pad_h
)
<<
")"
;
CHECK
(
param
.
pool_size
[
1
]
<=
dshape
[
widx
]
+
pad_w
)
<<
"pool size ("
<<
param
.
pool_size
[
1
]
<<
") exceeds input ("
<<
dshape
[
widx
]
<<
" padded to "
<<
(
dshape
[
widx
]
+
2
*
param
.
padding
[
1
]
)
<<
")"
;
<<
" padded to "
<<
(
dshape
[
widx
]
+
pad_w
)
<<
")"
;
if
(
!
param
.
ceil_mode
)
{
oshape
[
hidx
]
=
((
dshape
[
hidx
]
+
2
*
param
.
padding
[
0
]
-
param
.
pool_size
[
0
])
/
oshape
[
hidx
]
=
((
dshape
[
hidx
]
+
pad_h
-
param
.
pool_size
[
0
])
/
param
.
strides
[
0
])
+
1
;
oshape
[
widx
]
=
((
dshape
[
widx
]
+
2
*
param
.
padding
[
1
]
-
param
.
pool_size
[
1
])
/
oshape
[
widx
]
=
((
dshape
[
widx
]
+
pad_w
-
param
.
pool_size
[
1
])
/
param
.
strides
[
1
])
+
1
;
}
else
{
oshape
[
hidx
]
=
((
dshape
[
hidx
]
+
2
*
param
.
padding
[
0
]
-
param
.
pool_size
[
0
]
+
oshape
[
hidx
]
=
((
dshape
[
hidx
]
+
pad_h
-
param
.
pool_size
[
0
]
+
param
.
strides
[
0
]
-
1
)
/
param
.
strides
[
0
])
+
1
;
oshape
[
widx
]
=
((
dshape
[
3
]
+
2
*
param
.
padding
[
1
]
-
param
.
pool_size
[
1
]
+
oshape
[
widx
]
=
((
dshape
[
3
]
+
pad_w
-
param
.
pool_size
[
1
]
+
param
.
strides
[
1
]
-
1
)
/
param
.
strides
[
1
])
+
1
;
}
NNVM_ASSIGN_OUTPUT_SHAPE
(
attrs
,
*
out_shape
,
0
,
oshape
);
...
...
@@ -108,8 +125,13 @@ NNVM_REGISTER_OP(max_pool2d)
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
out_height and out_width are calculated as::
out_height = floor((height+2*padding[0]-pool_size[0])/strides[0])+1
out_width = floor((width+2*padding[1]-pool_size[1])/strides[1])+1
out_height = floor((height+padding[0]+padding[2]-pool_size[0])/strides[0])+1
out_width = floor((width+padding[1]+padding[3]-pool_size[1])/strides[1])+1
where padding will be an expanded array based on number of values passed as::
one int : all sides same padding used.
two int : bottom, right use same as top and left.
four int: padding width in the order of (top, left, bottom, right).
When `ceil_mode` is `True`, ceil will be used instead of floor in this
equation.
...
...
@@ -143,6 +165,15 @@ NNVM_REGISTER_OP(max_pool2d)
<<
"Pool2D only support 4-D input (e.g., NCHW)"
<<
" or 5-D input (last dimension is a split of channel)"
;
if
(
param
.
padding
.
ndim
()
==
1
)
{
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
0
]);
}
else
if
(
param
.
padding
.
ndim
()
==
2
)
{
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
1
]);
}
return
Array
<
Tensor
>
{
topi
::
nn
::
pool
(
inputs
[
0
],
pool_size
,
strides
,
padding
,
topi
::
nn
::
kMaxPool
,
ceil_mode
,
layout
.
name
())};
...
...
@@ -182,8 +213,13 @@ NNVM_REGISTER_OP(avg_pool2d)
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
out_height and out_width are calculated as::
out_height = floor((height+2*padding[0]-pool_size[0])/strides[0])+1
out_width = floor((width+2*padding[1]-pool_size[1])/strides[1])+1
out_height = floor((height+padding[0]+padding[2]-pool_size[0])/strides[0])+1
out_width = floor((width+padding[1]+padding[3]-pool_size[1])/strides[1])+1
where padding will be an expanded array based on number of values passed as::
one int : all sides same padding used.
two int : bottom, right use same as top and left.
four int: padding width in the order of (top, left, bottom, right).
When `ceil_mode` is `True`, ceil will be used instead of floor in this
equation.
...
...
@@ -216,6 +252,15 @@ NNVM_REGISTER_OP(avg_pool2d)
<<
"Pool2D only support 4-D input (e.g., NCHW)"
<<
" or 5-D input (last dimension is a split of channel)"
;
if
(
param
.
padding
.
ndim
()
==
1
)
{
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
0
]);
}
else
if
(
param
.
padding
.
ndim
()
==
2
)
{
padding
.
push_back
(
padding
[
0
]);
padding
.
push_back
(
padding
[
1
]);
}
return
Array
<
Tensor
>
{
topi
::
nn
::
pool
(
inputs
[
0
],
pool_size
,
strides
,
padding
,
topi
::
nn
::
kAvgPool
,
ceil_mode
,
layout
.
name
(),
count_include_pad
)};
...
...
nnvm/tests/python/frontend/tensorflow/test_forward.py
View file @
30f09bea
...
...
@@ -116,13 +116,13 @@ def test_forward_pooling():
pooling_type
=
'MAX'
,
dilation_rate
=
[
1
,
1
],
strides
=
[
1
,
1
])
_test_pooling
(
input_shape
=
[
2
,
9
,
10
,
2
],
window_shape
=
[
1
,
1
],
padding
=
'SAME'
,
pooling_type
=
'AVG'
,
dilation_rate
=
[
1
,
1
],
strides
=
[
1
,
1
])
_test_pooling
(
input_shape
=
[
2
,
10
,
9
,
2
],
window_shape
=
[
1
,
1
],
padding
=
'SAME'
,
...
...
@@ -136,6 +136,33 @@ def test_forward_pooling():
dilation_rate
=
[
1
,
1
],
strides
=
[
1
,
1
])
_test_pooling
(
input_shape
=
[
2
,
9
,
10
,
2
],
window_shape
=
[
2
,
1
],
padding
=
'SAME'
,
pooling_type
=
'MAX'
,
dilation_rate
=
[
1
,
1
],
strides
=
[
1
,
1
])
_test_pooling
(
input_shape
=
[
2
,
9
,
10
,
2
],
window_shape
=
[
2
,
1
],
padding
=
'SAME'
,
pooling_type
=
'AVG'
,
dilation_rate
=
[
1
,
1
],
strides
=
[
2
,
1
])
_test_pooling
(
input_shape
=
[
2
,
10
,
9
,
2
],
window_shape
=
[
2
,
3
],
padding
=
'SAME'
,
pooling_type
=
'MAX'
,
dilation_rate
=
[
1
,
1
],
strides
=
[
2
,
1
])
_test_pooling
(
input_shape
=
[
2
,
10
,
9
,
2
],
window_shape
=
[
2
,
3
],
padding
=
'SAME'
,
pooling_type
=
'AVG'
,
dilation_rate
=
[
1
,
1
],
strides
=
[
1
,
2
])
#######################################################################
# Convolution
# -----------
...
...
@@ -419,12 +446,7 @@ def test_forward_inception_v3():
top_tvm
=
np
.
squeeze
(
tvm_output
)
.
argsort
()[
-
3
:][::
-
1
]
top_tf
=
np
.
squeeze
(
tf_output
)
.
argsort
()[
-
3
:][::
-
1
]
# TVM implementation of SAME padding some times make a slight deviation.
# Hence check for top predictions.
top_tvm
=
np
.
sort
(
top_tvm
)
top_tf
=
np
.
sort
(
top_tf
)
np
.
testing
.
assert_allclose
(
top_tf
,
top_tvm
)
np
.
testing
.
assert_allclose
(
top_tf
,
top_tvm
,
rtol
=
1e-5
,
atol
=
1e-5
)
#######################################################################
# Inception V1
...
...
topi/include/topi/nn/pooling.h
View file @
30f09bea
...
...
@@ -52,28 +52,25 @@ inline Tensor pool_impl(const Tensor& x,
CHECK
(
x
->
shape
.
size
()
>=
2
)
<<
"Pooling input must >= 2-D (H, W)"
;
CHECK_EQ
(
kernel_size
.
size
(),
2
)
<<
"Pooling kernel_size must have 2 elements"
;
CHECK_EQ
(
stride_size
.
size
(),
2
)
<<
"Pooling stride_size must have 2 elements"
;
CHECK_EQ
(
padding_size
.
size
(),
2
)
<<
"Pooling padding_size must have 2
elements"
;
CHECK_EQ
(
padding_size
.
size
(),
4
)
<<
"Pooling padding_size must have 4
elements"
;
auto
kernel_height
=
kernel_size
[
0
];
auto
kernel_width
=
kernel_size
[
1
];
auto
stride_height
=
stride_size
[
0
];
auto
stride_width
=
stride_size
[
1
];
auto
padding_height
=
padding_size
[
0
];
auto
padding_width
=
padding_size
[
1
];
auto
height
=
x
->
shape
[
height_axis
];
auto
width
=
x
->
shape
[
width_axis
];
auto
pad_tuple
=
detail
::
GetPadTuple
(
padding_height
,
padding_width
);
auto
pad_top
=
pad_tuple
[
0
];
auto
pad_left
=
pad_tuple
[
1
];
auto
pad_down
=
pad_tuple
[
2
];
auto
pad_right
=
pad_tuple
[
3
];
auto
pad_top
=
padding_size
[
0
];
auto
pad_left
=
padding_size
[
1
];
auto
pad_bottom
=
padding_size
[
2
];
auto
pad_right
=
padding_size
[
3
];
if
(
ceil_mode
)
{
// Additional padding to ensure we do ceil instead of floor when
// dividing by stride.
pad_
down
+=
stride_height
-
1
;
pad_
bottom
+=
stride_height
-
1
;
pad_right
+=
stride_width
-
1
;
}
...
...
@@ -82,11 +79,11 @@ inline Tensor pool_impl(const Tensor& x,
pad_before
.
Set
(
width_axis
,
pad_left
);
Array
<
Expr
>
pad_after
(
std
::
vector
<
Expr
>
(
x
->
shape
.
size
(),
0
));
pad_after
.
Set
(
height_axis
,
pad_
down
);
pad_after
.
Set
(
height_axis
,
pad_
bottom
);
pad_after
.
Set
(
width_axis
,
pad_right
);
auto
out_height
=
tvm
::
ir
::
Simplify
(
(
height
-
kernel_height
+
pad_top
+
pad_
down
)
/
stride_height
+
1
);
(
height
-
kernel_height
+
pad_top
+
pad_
bottom
)
/
stride_height
+
1
);
auto
out_width
=
tvm
::
ir
::
Simplify
(
(
width
-
kernel_width
+
pad_left
+
pad_right
)
/
stride_width
+
1
);
...
...
@@ -97,9 +94,12 @@ inline Tensor pool_impl(const Tensor& x,
out_shape
.
Set
(
height_axis
,
out_height
);
out_shape
.
Set
(
width_axis
,
out_width
);
const
int64_t
*
padding_h
=
HalideIR
::
Internal
::
as_const_int
(
padding_height
);
const
int64_t
*
padding_w
=
HalideIR
::
Internal
::
as_const_int
(
padding_width
);
const
bool
do_pad
=
((
padding_h
&&
*
padding_h
)
||
(
padding_w
&&
*
padding_w
));
const
int64_t
*
padding_h0
=
HalideIR
::
Internal
::
as_const_int
(
pad_top
);
const
int64_t
*
padding_w0
=
HalideIR
::
Internal
::
as_const_int
(
pad_left
);
const
int64_t
*
padding_h1
=
HalideIR
::
Internal
::
as_const_int
(
pad_bottom
);
const
int64_t
*
padding_w1
=
HalideIR
::
Internal
::
as_const_int
(
pad_right
);
const
bool
do_pad
=
((
padding_h0
&&
*
padding_h0
)
||
(
padding_w0
&&
*
padding_w0
))
||
((
padding_h1
&&
*
padding_h1
)
||
(
padding_w1
&&
*
padding_w1
));
if
(
pool_type
==
kMaxPool
)
{
auto
temp
=
do_pad
?
pad
(
x
,
pad_before
,
pad_after
,
x
->
dtype
.
min
(),
"pad_temp"
)
:
x
;
...
...
@@ -125,8 +125,8 @@ inline Tensor pool_impl(const Tensor& x,
if
(
count_include_pad
)
{
return
tsum
(
output
)
/
(
kernel_height
*
kernel_width
);
}
else
{
Expr
h_start
=
output
[
height_axis
]
*
stride_height
-
pad
ding_height
;
Expr
w_start
=
output
[
width_axis
]
*
stride_width
-
pad
ding_width
;
Expr
h_start
=
output
[
height_axis
]
*
stride_height
-
pad
_top
;
Expr
w_start
=
output
[
width_axis
]
*
stride_width
-
pad
_left
;
Expr
h_end
=
ir
::
Min
::
make
(
h_start
+
kernel_height
,
height
);
Expr
w_end
=
ir
::
Min
::
make
(
w_start
+
kernel_width
,
width
);
h_start
=
ir
::
Max
::
make
(
h_start
,
make_const
(
Int
(
32
),
0
));
...
...
topi/python/topi/nn/pooling.py
View file @
30f09bea
...
...
@@ -69,8 +69,8 @@ def pool(data,
stride : list/tuple of two ints
Stride size, [stride_height, stride_width]
padding : list/tuple of
two
ints
Pad size, [pad_
height, pad_width
]
padding : list/tuple of
four
ints
Pad size, [pad_
top, pad_left, pad_bottom, pad_right]
]
pool_type : str
Pool type, 'max' or 'avg'
...
...
topi/tests/python/test_topi_pooling.py
View file @
30f09bea
...
...
@@ -9,7 +9,7 @@ def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_
iw
=
ih
kw
=
kh
sw
=
sh
p
h
,
pw
=
padding
p
t
,
pl
,
pb
,
pr
=
padding
A
=
tvm
.
placeholder
((
n
,
ic
,
ih
,
iw
),
name
=
'A'
)
B
=
topi
.
nn
.
pool
(
A
,
kernel
=
[
kh
,
kw
],
stride
=
[
sh
,
sw
],
padding
=
padding
,
pool_type
=
pool_type
,
ceil_mode
=
ceil_mode
,
count_include_pad
=
count_include_pad
)
...
...
@@ -19,16 +19,15 @@ def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_
bshape
=
get_const_tuple
(
B
.
shape
)
ashape
=
get_const_tuple
(
A
.
shape
)
if
ceil_mode
:
assert
bshape
[
2
]
==
int
(
math
.
ceil
(
float
(
ashape
[
2
]
-
kh
+
p
h
*
2
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
ceil
(
float
(
ashape
[
3
]
-
kw
+
p
w
*
2
)
/
sw
)
+
1
)
assert
bshape
[
2
]
==
int
(
math
.
ceil
(
float
(
ashape
[
2
]
-
kh
+
p
t
+
pb
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
ceil
(
float
(
ashape
[
3
]
-
kw
+
p
l
+
pr
)
/
sw
)
+
1
)
else
:
assert
bshape
[
2
]
==
int
(
math
.
floor
(
float
(
ashape
[
2
]
-
kh
+
ph
*
2
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
floor
(
float
(
ashape
[
3
]
-
kw
+
pw
*
2
)
/
sw
)
+
1
)
assert
bshape
[
2
]
==
int
(
math
.
floor
(
float
(
ashape
[
2
]
-
kh
+
pt
+
pb
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
floor
(
float
(
ashape
[
3
]
-
kw
+
pl
+
pr
)
/
sw
)
+
1
)
a_np
=
np
.
random
.
uniform
(
low
=
0.001
,
size
=
(
n
,
ic
,
ih
,
iw
))
.
astype
(
dtype
)
pad_np
=
np
.
zeros
(
shape
=
(
n
,
ic
,
ih
+
2
*
ph
,
iw
+
2
*
pw
))
.
astype
(
dtype
)
no_zero
=
(
range
(
n
),
range
(
ic
),
(
range
(
p
h
,
ih
+
ph
)),
(
range
(
pw
,
iw
+
pw
)))
pad_np
=
np
.
zeros
(
shape
=
(
n
,
ic
,
ih
+
pt
+
pb
,
iw
+
pl
+
pr
))
.
astype
(
dtype
)
no_zero
=
(
range
(
n
),
range
(
ic
),
(
range
(
p
t
,
ih
+
pt
)),
(
range
(
pl
,
iw
+
pl
)))
pad_np
[
np
.
ix_
(
*
no_zero
)]
=
a_np
_
,
oc
,
oh
,
ow
=
get_const_tuple
(
B
.
shape
)
b_np
=
np
.
zeros
(
shape
=
(
n
,
oc
,
oh
,
ow
))
.
astype
(
dtype
)
...
...
@@ -67,15 +66,19 @@ def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_
check_device
(
device
)
def
test_pool
():
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
1
,
2
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
1
,
2
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
3
,
3
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
0
,
0
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
],
'max'
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
,
0
,
0
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
1
,
2
,
1
,
2
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
1
,
2
,
1
,
2
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
3
,
3
,
3
,
3
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
0
,
0
,
0
,
0
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
,
0
,
0
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
,
2
,
1
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
,
2
,
1
],
'max'
,
True
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
,
0
,
3
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
3
,
2
,
1
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
1
,
0
,
3
,
2
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
3
,
2
,
1
,
0
],
'max'
,
True
)
def
verify_global_pool
(
n
,
c
,
h
,
w
,
pool_type
):
...
...
topi/tests/python_cpp/test_topi_pooling.py
View file @
30f09bea
...
...
@@ -13,7 +13,7 @@ def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_
iw
=
ih
kw
=
kh
sw
=
sh
p
h
,
pw
=
padding
p
t
,
pl
,
pb
,
pr
=
padding
A
=
tvm
.
placeholder
((
n
,
ic
,
ih
,
iw
),
name
=
'A'
)
B
=
topi
.
cpp
.
nn
.
pool
(
A
,
[
kh
,
kw
],
[
sh
,
sw
],
padding
,
pool_code
[
pool_type
],
ceil_mode
,
"NCHW"
,
count_include_pad
)
...
...
@@ -23,16 +23,16 @@ def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_
bshape
=
get_const_tuple
(
B
.
shape
)
ashape
=
get_const_tuple
(
A
.
shape
)
if
ceil_mode
:
assert
bshape
[
2
]
==
int
(
math
.
ceil
(
float
(
ashape
[
2
]
-
kh
+
p
h
*
2
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
ceil
(
float
(
ashape
[
3
]
-
kw
+
p
w
*
2
)
/
sw
)
+
1
)
assert
bshape
[
2
]
==
int
(
math
.
ceil
(
float
(
ashape
[
2
]
-
kh
+
p
t
+
pb
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
ceil
(
float
(
ashape
[
3
]
-
kw
+
p
l
+
pr
)
/
sw
)
+
1
)
else
:
assert
bshape
[
2
]
==
int
(
math
.
floor
(
float
(
ashape
[
2
]
-
kh
+
p
h
*
2
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
floor
(
float
(
ashape
[
3
]
-
kw
+
p
w
*
2
)
/
sw
)
+
1
)
assert
bshape
[
2
]
==
int
(
math
.
floor
(
float
(
ashape
[
2
]
-
kh
+
p
t
+
pb
)
/
sh
)
+
1
)
assert
bshape
[
3
]
==
int
(
math
.
floor
(
float
(
ashape
[
3
]
-
kw
+
p
l
+
pr
)
/
sw
)
+
1
)
a_np
=
np
.
random
.
uniform
(
size
=
(
n
,
ic
,
ih
,
iw
))
.
astype
(
dtype
)
pad_np
=
np
.
zeros
(
shape
=
(
n
,
ic
,
ih
+
2
*
ph
,
iw
+
2
*
pw
))
.
astype
(
dtype
)
no_zero
=
(
range
(
n
),
range
(
ic
),
(
range
(
p
h
,
ih
+
ph
)),
(
range
(
pw
,
iw
+
pw
)))
pad_np
=
np
.
zeros
(
shape
=
(
n
,
ic
,
ih
+
pt
+
pb
,
iw
+
pl
+
pr
))
.
astype
(
dtype
)
no_zero
=
(
range
(
n
),
range
(
ic
),
(
range
(
p
t
,
ih
+
pt
)),
(
range
(
pl
,
iw
+
pl
)))
pad_np
[
np
.
ix_
(
*
no_zero
)]
=
a_np
_
,
oc
,
oh
,
ow
=
get_const_tuple
(
B
.
shape
)
b_np
=
np
.
zeros
(
shape
=
(
n
,
oc
,
oh
,
ow
))
.
astype
(
dtype
)
...
...
@@ -73,15 +73,19 @@ def verify_pool(n, ic, ih, kh, sh, padding, pool_type, ceil_mode, count_include_
check_device
(
device
)
def
test_pool
():
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
1
,
2
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
1
,
2
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
3
,
3
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
0
,
0
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
],
'max'
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
,
0
,
0
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
1
,
2
,
1
,
2
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
1
,
2
,
1
,
2
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
3
,
3
,
3
,
3
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
4
,
4
,
[
0
,
0
,
0
,
0
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
0
,
0
,
0
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
,
2
,
1
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
,
2
,
1
],
'max'
,
True
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
2
,
1
,
0
,
3
],
'avg'
,
False
,
True
)
verify_pool
(
1
,
256
,
32
,
2
,
2
,
[
0
,
3
,
2
,
1
],
'avg'
,
False
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
1
,
0
,
3
,
2
],
'max'
,
False
)
verify_pool
(
1
,
256
,
31
,
3
,
3
,
[
3
,
2
,
1
,
0
],
'max'
,
True
)
def
verify_global_pool
(
n
,
c
,
h
,
w
,
pool_type
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment