Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
2fb1cc6e
Commit
2fb1cc6e
authored
Oct 29, 2018
by
Josh Pollock
Committed by
Tianqi Chen
Oct 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay] DCGAN port (#2010)
parent
a1dfb9ae
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
137 additions
and
1 deletions
+137
-1
python/tvm/relay/testing/__init__.py
+1
-0
python/tvm/relay/testing/dcgan.py
+96
-0
python/tvm/relay/testing/dqn.py
+10
-0
python/tvm/relay/testing/layers.py
+24
-0
tests/python/relay/test_ir_text_printer.py
+6
-1
No files found.
python/tvm/relay/testing/__init__.py
View file @
2fb1cc6e
...
...
@@ -4,3 +4,4 @@ from __future__ import absolute_import as _abs
from
.
import
mlp
from
.
import
resnet
from
.
import
dqn
from
.
import
dcgan
python/tvm/relay/testing/dcgan.py
0 → 100644
View file @
2fb1cc6e
# pylint: disable=unused-argument
"""
Net of the generator of DCGAN
Adopted from:
https://github.com/tqchen/mxnet-gan/blob/master/mxgan/generator.py
Reference:
Radford, Alec, Luke Metz, and Soumith Chintala.
"Unsupervised representation learning with deep convolutional generative adversarial networks."
arXiv preprint arXiv:1511.06434 (2015).
"""
from
tvm
import
relay
from
.
import
layers
from
.init
import
create_workload
def
deconv2d
(
data
,
ishape
,
oshape
,
kshape
,
name
,
stride
=
(
2
,
2
)):
"""a deconv layer that enlarges the feature map"""
target_shape
=
(
oshape
[
-
2
],
oshape
[
-
1
])
pad_y
=
(
kshape
[
0
]
-
1
)
//
2
pad_x
=
(
kshape
[
1
]
-
1
)
//
2
adj_y
=
(
target_shape
[
0
]
+
2
*
pad_y
-
kshape
[
0
])
%
stride
[
0
]
adj_x
=
(
target_shape
[
1
]
+
2
*
pad_x
-
kshape
[
1
])
%
stride
[
1
]
net
=
layers
.
conv2d_transpose
(
data
,
kernel_size
=
kshape
,
strides
=
stride
,
channels
=
oshape
[
0
],
padding
=
(
pad_y
,
pad_x
),
output_padding
=
(
adj_y
,
adj_x
),
name
=
name
)
return
net
def
deconv2d_bn_relu
(
data
,
prefix
,
**
kwargs
):
"""a block of deconv + batch norm + relu"""
eps
=
1e-5
+
1e-12
net
=
deconv2d
(
data
,
name
=
"
%
s_deconv"
%
prefix
,
**
kwargs
)
net
=
layers
.
batch_norm_infer
(
net
,
epsilon
=
eps
,
name
=
"batch_norm"
)
net
=
relay
.
nn
.
relu
(
net
)
return
net
def
get_net
(
batch_size
,
random_len
=
100
,
oshape
=
(
3
,
64
,
64
),
ngf
=
128
,
code
=
None
,
dtype
=
"float32"
):
"""get net of dcgan generator"""
assert
oshape
[
-
1
]
==
64
,
"Only support 64x64 image"
assert
oshape
[
-
2
]
==
64
,
"Only support 64x64 image"
code
=
relay
.
var
(
"data"
,
dtype
=
dtype
,
shape
=
(
batch_size
,
random_len
))
if
code
is
None
else
code
dense_weight
=
relay
.
var
(
"dense_weight"
)
dense
=
relay
.
nn
.
dense
(
code
,
weight
=
dense_weight
,
units
=
4
*
4
*
ngf
*
8
)
relu
=
relay
.
nn
.
relu
(
dense
)
# 4 x 4
reshape
=
relay
.
reshape
(
relu
,
newshape
=
(
-
1
,
ngf
*
8
,
4
,
4
))
# 8 x 8
dc8
=
deconv2d_bn_relu
(
reshape
,
ishape
=
(
ngf
*
8
,
4
,
4
),
oshape
=
(
ngf
*
4
,
8
,
8
),
kshape
=
(
4
,
4
),
prefix
=
"g2"
)
# 16x16
dc16
=
deconv2d_bn_relu
(
dc8
,
ishape
=
(
ngf
*
4
,
8
,
8
),
oshape
=
(
ngf
*
2
,
16
,
16
),
kshape
=
(
4
,
4
),
prefix
=
"g3"
)
# 32x32
dc32
=
deconv2d_bn_relu
(
dc16
,
ishape
=
(
ngf
*
2
,
16
,
16
),
oshape
=
(
ngf
,
32
,
32
),
kshape
=
(
4
,
4
),
prefix
=
"g4"
)
# 64x64
dc64
=
deconv2d
(
dc32
,
ishape
=
(
ngf
,
32
,
32
),
oshape
=
oshape
[
-
3
:],
kshape
=
(
4
,
4
),
name
=
"g5_deconv"
)
tanh
=
relay
.
tanh
(
dc64
)
args
=
relay
.
ir_pass
.
free_vars
(
tanh
)
return
relay
.
Function
(
args
,
tanh
)
def
get_workload
(
batch_size
,
oshape
=
(
3
,
64
,
64
),
ngf
=
128
,
random_len
=
100
,
dtype
=
"float32"
):
"""Get benchmark workload for a DCGAN generator
Parameters
----------
batch_size : int
The batch size used in the model
oshape : tuple, optional
The shape of output image, layout="CHW"
ngf: int, optional
The number of final feature maps in the generator
random_len : int, optional
The length of random input
dtype : str, optional
The data type
Returns
-------
net : nnvm.symbol
The computational graph
params : dict of str to NDArray
The parameters.
"""
net
=
get_net
(
batch_size
,
random_len
,
oshape
=
oshape
,
ngf
=
ngf
,
dtype
=
dtype
)
return
create_workload
(
net
)
python/tvm/relay/testing/dqn.py
View file @
2fb1cc6e
...
...
@@ -30,15 +30,25 @@ def get_net(batch_size, num_actions=18, image_shape=(4, 84, 84), dtype="float32"
"""get symbol of nature dqn"""
data_shape
=
(
batch_size
,)
+
image_shape
data
=
relay
.
var
(
"data"
,
shape
=
data_shape
,
dtype
=
dtype
)
conv1_bias
=
relay
.
var
(
"conv1_bias"
)
conv1
=
layers
.
conv2d
(
data
,
kernel_size
=
(
8
,
8
),
strides
=
(
4
,
4
),
padding
=
(
0
,
0
),
channels
=
32
,
name
=
"conv1"
)
conv1
=
relay
.
nn
.
bias_add
(
conv1
,
conv1_bias
)
relu1
=
relay
.
nn
.
relu
(
conv1
)
conv2_bias
=
relay
.
var
(
"conv2_bias"
)
conv2
=
layers
.
conv2d
(
relu1
,
kernel_size
=
(
4
,
4
),
strides
=
(
2
,
2
),
padding
=
(
0
,
0
),
channels
=
64
,
name
=
"conv2"
)
conv2
=
relay
.
nn
.
bias_add
(
conv2
,
conv2_bias
)
relu2
=
relay
.
nn
.
relu
(
conv2
)
conv3_bias
=
relay
.
var
(
"conv3_bias"
)
conv3
=
layers
.
conv2d
(
relu2
,
kernel_size
=
(
3
,
3
),
strides
=
(
1
,
1
),
padding
=
(
0
,
0
),
channels
=
64
,
name
=
"conv3"
)
conv3
=
relay
.
nn
.
bias_add
(
conv3
,
conv3_bias
)
relu3
=
relay
.
nn
.
relu
(
conv3
)
bf1
=
relay
.
nn
.
batch_flatten
(
relu3
)
dense1
=
layers
.
dense_add_bias
(
bf1
,
units
=
512
,
name
=
"dense1"
)
relu4
=
relay
.
nn
.
relu
(
dense1
)
...
...
python/tvm/relay/testing/layers.py
View file @
2fb1cc6e
...
...
@@ -80,6 +80,30 @@ def conv2d(data, weight=None, **kwargs):
weight
=
relay
.
var
(
name
+
"_weight"
)
return
relay
.
nn
.
conv2d
(
data
,
weight
,
**
kwargs
)
def
conv2d_transpose
(
data
,
weight
=
None
,
**
kwargs
):
"""Wrapper of conv2d_transpose which automatically creates weights if not given.
Parameters
----------
data : relay.Expr
The input expression.
weight : relay.Expr
The weight to conv2d_transpose.
kwargs : dict
Additional arguments.
Returns
-------
result : relay.Expr
The result.
"""
name
=
kwargs
.
get
(
"name"
)
kwargs
.
pop
(
"name"
)
if
not
weight
:
weight
=
relay
.
var
(
name
+
"_weight"
)
return
relay
.
nn
.
conv2d_transpose
(
data
,
weight
,
**
kwargs
)
def
dense_add_bias
(
data
,
weight
=
None
,
bias
=
None
,
**
kwargs
):
"""Wrapper of dense which automatically creates weights if not given.
...
...
tests/python/relay/test_ir_text_printer.py
View file @
2fb1cc6e
...
...
@@ -106,13 +106,18 @@ def test_resnet():
def
test_dqn
():
net
,
params
=
tvm
.
relay
.
testing
.
dqn
.
get_workload
(
batch_size
=
1
)
show
(
net
.
astext
())
net
.
astext
()
def
test_dcgan
():
net
,
params
=
tvm
.
relay
.
testing
.
dcgan
.
get_workload
(
batch_size
=
1
)
net
.
astext
()
if
__name__
==
"__main__"
:
do_print
[
0
]
=
True
test_resnet
()
test_mlp
()
test_dqn
()
test_dcgan
()
test_func
()
test_env
()
test_meta_data
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment