Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
2f4a5ad9
Commit
2f4a5ad9
authored
Oct 04, 2017
by
Tianqi Chen
Committed by
GitHub
Oct 04, 2017
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[SCHEDULE] Further fix of reduce inline with multiple outputs (#508)
parent
f631fb43
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
41 additions
and
12 deletions
+41
-12
src/op/compute_op.cc
+36
-10
src/op/op_util.cc
+1
-0
tests/python/unittest/test_schedule_schedule_ops.py
+4
-2
No files found.
src/op/compute_op.cc
View file @
2f4a5ad9
...
...
@@ -24,6 +24,13 @@ TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
TVM_REGISTER_NODE_TYPE
(
ComputeOpNode
);
inline
bool
ReduceEqual
(
const
ir
::
Reduce
*
a
,
const
ir
::
Reduce
*
b
)
{
return
(
a
->
combiner
.
same_as
(
b
->
combiner
))
&&
(
a
->
source
.
same_as
(
b
->
source
))
&&
(
a
->
axis
.
same_as
(
b
->
axis
))
&&
(
a
->
condition
.
same_as
(
b
->
condition
));
}
int
ComputeOpNode
::
num_outputs
()
const
{
return
body
.
size
();
}
...
...
@@ -98,13 +105,6 @@ Array<Tensor> compute(Array<Expr> shape,
return
outputs
;
}
inline
bool
ReduceEqual
(
const
ir
::
Reduce
*
a
,
const
ir
::
Reduce
*
b
)
{
return
(
a
->
combiner
.
same_as
(
b
->
combiner
))
&&
(
a
->
source
.
same_as
(
b
->
source
))
&&
(
a
->
axis
.
same_as
(
b
->
axis
))
&&
(
a
->
condition
.
same_as
(
b
->
condition
));
}
Operation
ComputeOpNode
::
make
(
std
::
string
name
,
std
::
string
tag
,
Array
<
IterVar
>
axis
,
...
...
@@ -151,9 +151,35 @@ Operation ComputeOpNode::ReplaceInputs(
const
Operation
&
self
,
const
std
::
unordered_map
<
Tensor
,
Tensor
>&
rmap
)
const
{
CHECK_EQ
(
self
.
operator
->
(),
this
);
Array
<
Expr
>
arr
=
UpdateArray
(
this
->
body
,
[
&
rmap
]
(
const
Expr
&
e
)
{
return
op
::
ReplaceTensor
(
e
,
rmap
);
});
Array
<
Expr
>
arr
;
if
(
this
->
body
[
0
]
->
is_type
<
ir
::
Reduce
>
())
{
// Specially handle reduce so the replaced op
// still share all the components
const
ir
::
Reduce
*
reduce
=
this
->
body
[
0
].
as
<
ir
::
Reduce
>
();
for
(
size_t
i
=
1
;
i
<
this
->
body
.
size
();
++
i
)
{
const
ir
::
Reduce
*
reduce_
=
this
->
body
[
i
].
as
<
ir
::
Reduce
>
();
CHECK
(
reduce_
);
CHECK
(
ReduceEqual
(
reduce_
,
reduce
))
<<
"The Reduce inputs of ComputeOp should "
<<
"have the same attribute except value_index"
;
}
\
Expr
new_reduce
=
op
::
ReplaceTensor
(
this
->
body
[
0
],
rmap
);
if
(
!
new_reduce
.
same_as
(
this
->
body
[
0
]))
{
const
ir
::
Reduce
*
r
=
new_reduce
.
as
<
ir
::
Reduce
>
();
for
(
size_t
k
=
0
;
k
<
this
->
body
.
size
();
++
k
)
{
std
::
shared_ptr
<
ir
::
Reduce
>
n
=
std
::
make_shared
<
ir
::
Reduce
>
(
*
r
);
n
->
value_index
=
static_cast
<
int
>
(
k
);
n
->
type
=
r
->
source
[
k
].
type
();
arr
.
push_back
(
Expr
(
n
));
}
}
else
{
arr
=
this
->
body
;
}
}
else
{
arr
=
UpdateArray
(
this
->
body
,
[
&
rmap
]
(
const
Expr
&
e
)
{
return
op
::
ReplaceTensor
(
e
,
rmap
);
});
}
if
(
!
arr
.
same_as
(
this
->
body
))
{
return
ComputeOpNode
::
make
(
name
,
tag
,
axis
,
arr
);
}
else
{
...
...
src/op/op_util.cc
View file @
2f4a5ad9
...
...
@@ -162,6 +162,7 @@ class TensorReplacer : public ir::IRMutator {
public
:
explicit
TensorReplacer
(
const
std
::
unordered_map
<
Tensor
,
Tensor
>&
vmap
)
:
vmap_
(
vmap
)
{}
Expr
Mutate_
(
const
ir
::
Call
*
op
,
const
Expr
&
e
)
{
if
(
op
->
call_type
==
ir
::
Call
::
Halide
)
{
Tensor
t
=
Operation
(
op
->
func
.
node_
).
output
(
op
->
value_index
);
...
...
tests/python/unittest/test_schedule_schedule_ops.py
View file @
2f4a5ad9
...
...
@@ -68,16 +68,18 @@ def test_inline_multi_reduce():
m
=
tvm
.
var
(
'm'
)
n
=
tvm
.
var
(
'n'
)
val
=
tvm
.
placeholder
((
m
,
n
),
name
=
'val'
,
dtype
=
'float32'
)
val2
=
tvm
.
compute
((
m
,
n
),
lambda
i
,
j
:
tvm
.
exp
(
val
[
i
,
j
]),
name
=
'val2'
)
val1
=
tvm
.
compute
((
m
,
n
),
lambda
i
,
j
:
val
[
i
,
j
]
+
1
,
name
=
'val1'
)
val2
=
tvm
.
compute
((
m
,
n
),
lambda
i
,
j
:
tvm
.
exp
(
val1
[
i
,
j
]),
name
=
'val2'
)
k
=
tvm
.
reduce_axis
((
0
,
n
),
'k'
)
T_idx
,
T_val
=
tvm
.
compute
((
m
,
),
lambda
i
:
argmax
((
k
.
var
,
val2
[
i
,
k
]),
axis
=
k
),
name
=
'T'
)
s
=
tvm
.
create_schedule
(
T_idx
.
op
)
s
[
val
2
]
.
compute_inline
()
s
[
val
1
]
.
compute_inline
()
s
=
s
.
normalize
()
bounds
=
tvm
.
schedule
.
InferBound
(
s
)
stmt
=
tvm
.
schedule
.
ScheduleOps
(
s
,
bounds
)
def
test_auto_inline
():
m
=
tvm
.
var
(
'm'
)
n
=
tvm
.
var
(
'n'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment