Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
292609d8
Commit
292609d8
authored
Jan 16, 2018
by
Lianmin Zheng
Committed by
Tianqi Chen
May 29, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
remove dtype in model symbol (#310)
parent
acb9fd62
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
6 additions
and
24 deletions
+6
-24
nnvm/python/nnvm/testing/resnet.py
+4
-15
nnvm/python/nnvm/testing/vgg.py
+2
-9
No files found.
nnvm/python/nnvm/testing/resnet.py
View file @
292609d8
...
@@ -24,7 +24,6 @@ Implemented the following paper:
...
@@ -24,7 +24,6 @@ Implemented the following paper:
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Identity Mappings in Deep Residual Networks"
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Identity Mappings in Deep Residual Networks"
'''
'''
# pylint: disable=unused-argument
# pylint: disable=unused-argument
import
numpy
as
np
from
..
import
symbol
as
sym
from
..
import
symbol
as
sym
from
.
utils
import
create_workload
from
.
utils
import
create_workload
...
@@ -91,7 +90,7 @@ def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True):
...
@@ -91,7 +90,7 @@ def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True):
return
sym
.
elemwise_add
(
conv2
,
shortcut
)
return
sym
.
elemwise_add
(
conv2
,
shortcut
)
def
resnet
(
units
,
num_stages
,
filter_list
,
num_classes
,
image_shape
,
def
resnet
(
units
,
num_stages
,
filter_list
,
num_classes
,
image_shape
,
bottle_neck
=
True
,
dtype
=
'float32'
):
bottle_neck
=
True
):
"""Return ResNet symbol of
"""Return ResNet symbol of
Parameters
Parameters
----------
----------
...
@@ -105,17 +104,10 @@ def resnet(units, num_stages, filter_list, num_classes, image_shape,
...
@@ -105,17 +104,10 @@ def resnet(units, num_stages, filter_list, num_classes, image_shape,
Ouput size of symbol
Ouput size of symbol
dataset : str
dataset : str
Dataset type, only cifar10 and imagenet supports
Dataset type, only cifar10 and imagenet supports
dtype : str
Precision (float32 or float16)
"""
"""
num_unit
=
len
(
units
)
num_unit
=
len
(
units
)
assert
num_unit
==
num_stages
assert
num_unit
==
num_stages
data
=
sym
.
Variable
(
name
=
'data'
)
data
=
sym
.
Variable
(
name
=
'data'
)
if
dtype
==
'float32'
:
data
=
data
else
:
if
dtype
==
'float16'
:
data
=
sym
.
cast
(
data
=
data
,
dtype
=
np
.
float16
)
data
=
sym
.
batch_norm
(
data
=
data
,
epsilon
=
2e-5
,
name
=
'bn_data'
)
data
=
sym
.
batch_norm
(
data
=
data
,
epsilon
=
2e-5
,
name
=
'bn_data'
)
(
_
,
height
,
_
)
=
image_shape
(
_
,
height
,
_
)
=
image_shape
if
height
<=
32
:
# such as cifar10
if
height
<=
32
:
# such as cifar10
...
@@ -144,11 +136,9 @@ def resnet(units, num_stages, filter_list, num_classes, image_shape,
...
@@ -144,11 +136,9 @@ def resnet(units, num_stages, filter_list, num_classes, image_shape,
pool1
=
sym
.
global_avg_pool2d
(
data
=
relu1
,
name
=
'pool1'
)
pool1
=
sym
.
global_avg_pool2d
(
data
=
relu1
,
name
=
'pool1'
)
flat
=
sym
.
flatten
(
data
=
pool1
)
flat
=
sym
.
flatten
(
data
=
pool1
)
fc1
=
sym
.
dense
(
data
=
flat
,
units
=
num_classes
,
name
=
'fc1'
)
fc1
=
sym
.
dense
(
data
=
flat
,
units
=
num_classes
,
name
=
'fc1'
)
if
dtype
==
'float16'
:
fc1
=
sym
.
cast
(
data
=
fc1
,
dtype
=
np
.
float32
)
return
sym
.
softmax
(
data
=
fc1
,
name
=
'softmax'
)
return
sym
.
softmax
(
data
=
fc1
,
name
=
'softmax'
)
def
get_symbol
(
num_classes
,
num_layers
=
50
,
image_shape
=
(
3
,
224
,
224
),
dtype
=
'float32'
,
**
kwargs
):
def
get_symbol
(
num_classes
,
num_layers
=
50
,
image_shape
=
(
3
,
224
,
224
),
**
kwargs
):
"""
"""
Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py
Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py
Original author Wei Wu
Original author Wei Wu
...
@@ -197,8 +187,7 @@ def get_symbol(num_classes, num_layers=50, image_shape=(3, 224, 224), dtype='flo
...
@@ -197,8 +187,7 @@ def get_symbol(num_classes, num_layers=50, image_shape=(3, 224, 224), dtype='flo
filter_list
=
filter_list
,
filter_list
=
filter_list
,
num_classes
=
num_classes
,
num_classes
=
num_classes
,
image_shape
=
image_shape
,
image_shape
=
image_shape
,
bottle_neck
=
bottle_neck
,
bottle_neck
=
bottle_neck
)
dtype
=
dtype
)
def
get_workload
(
batch_size
=
1
,
num_classes
=
1000
,
num_layers
=
18
,
def
get_workload
(
batch_size
=
1
,
num_classes
=
1000
,
num_layers
=
18
,
image_shape
=
(
3
,
224
,
224
),
dtype
=
"float32"
,
**
kwargs
):
image_shape
=
(
3
,
224
,
224
),
dtype
=
"float32"
,
**
kwargs
):
...
@@ -233,5 +222,5 @@ def get_workload(batch_size=1, num_classes=1000, num_layers=18,
...
@@ -233,5 +222,5 @@ def get_workload(batch_size=1, num_classes=1000, num_layers=18,
The parameters.
The parameters.
"""
"""
net
=
get_symbol
(
num_classes
=
num_classes
,
num_layers
=
num_layers
,
net
=
get_symbol
(
num_classes
=
num_classes
,
num_layers
=
num_layers
,
image_shape
=
image_shape
,
dtype
=
dtype
,
**
kwargs
)
image_shape
=
image_shape
,
**
kwargs
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
nnvm/python/nnvm/testing/vgg.py
View file @
292609d8
...
@@ -20,7 +20,6 @@
...
@@ -20,7 +20,6 @@
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
"""
"""
import
numpy
as
np
from
..
import
symbol
as
sym
from
..
import
symbol
as
sym
from
.
utils
import
create_workload
from
.
utils
import
create_workload
...
@@ -51,7 +50,7 @@ def get_classifier(input_data, num_classes):
...
@@ -51,7 +50,7 @@ def get_classifier(input_data, num_classes):
fc8
=
sym
.
dense
(
data
=
drop7
,
units
=
num_classes
,
name
=
"fc8"
)
fc8
=
sym
.
dense
(
data
=
drop7
,
units
=
num_classes
,
name
=
"fc8"
)
return
fc8
return
fc8
def
get_symbol
(
num_classes
,
num_layers
=
11
,
batch_norm
=
False
,
dtype
=
'float32'
):
def
get_symbol
(
num_classes
,
num_layers
=
11
,
batch_norm
=
False
):
"""
"""
Parameters
Parameters
----------
----------
...
@@ -61,8 +60,6 @@ def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32'):
...
@@ -61,8 +60,6 @@ def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32'):
Number of layers for the variant of densenet. Options are 11, 13, 16, 19.
Number of layers for the variant of densenet. Options are 11, 13, 16, 19.
batch_norm : bool, default False
batch_norm : bool, default False
Use batch normalization.
Use batch normalization.
dtype: str, float32 or float16
Data precision.
"""
"""
vgg_spec
=
{
11
:
([
1
,
1
,
2
,
2
,
2
],
[
64
,
128
,
256
,
512
,
512
]),
vgg_spec
=
{
11
:
([
1
,
1
,
2
,
2
,
2
],
[
64
,
128
,
256
,
512
,
512
]),
13
:
([
2
,
2
,
2
,
2
,
2
],
[
64
,
128
,
256
,
512
,
512
]),
13
:
([
2
,
2
,
2
,
2
,
2
],
[
64
,
128
,
256
,
512
,
512
]),
...
@@ -72,12 +69,8 @@ def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32'):
...
@@ -72,12 +69,8 @@ def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype='float32'):
raise
ValueError
(
"Invalide num_layers {}. Choices are 11,13,16,19."
.
format
(
num_layers
))
raise
ValueError
(
"Invalide num_layers {}. Choices are 11,13,16,19."
.
format
(
num_layers
))
layers
,
filters
=
vgg_spec
[
num_layers
]
layers
,
filters
=
vgg_spec
[
num_layers
]
data
=
sym
.
Variable
(
name
=
"data"
)
data
=
sym
.
Variable
(
name
=
"data"
)
if
dtype
==
'float16'
:
data
=
sym
.
cast
(
data
=
data
,
dtype
=
np
.
float16
)
feature
=
get_feature
(
data
,
layers
,
filters
,
batch_norm
)
feature
=
get_feature
(
data
,
layers
,
filters
,
batch_norm
)
classifier
=
get_classifier
(
feature
,
num_classes
)
classifier
=
get_classifier
(
feature
,
num_classes
)
if
dtype
==
'float16'
:
classifier
=
sym
.
cast
(
data
=
classifier
,
dtype
=
np
.
float32
)
symbol
=
sym
.
softmax
(
data
=
classifier
,
name
=
'softmax'
)
symbol
=
sym
.
softmax
(
data
=
classifier
,
name
=
'softmax'
)
return
symbol
return
symbol
...
@@ -110,5 +103,5 @@ def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224),
...
@@ -110,5 +103,5 @@ def get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224),
params : dict of str to NDArray
params : dict of str to NDArray
The parameters.
The parameters.
"""
"""
net
=
get_symbol
(
num_classes
=
num_classes
,
dtype
=
dtype
,
**
kwargs
)
net
=
get_symbol
(
num_classes
=
num_classes
,
**
kwargs
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
return
create_workload
(
net
,
batch_size
,
image_shape
,
dtype
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment