Commit 2919a3ee by Andrew Tulloch Committed by Tianqi Chen

Implement flop support for int8 models (#2776)

parent d2f29ba5
...@@ -338,7 +338,7 @@ def compute_flop(sch): ...@@ -338,7 +338,7 @@ def compute_flop(sch):
expr.Max, expr.Min, expr.Max, expr.Min,
expr.EQ, expr.NE, expr.LT, expr.LE, expr.GT, expr.GE, expr.EQ, expr.NE, expr.LT, expr.LE, expr.GT, expr.GE,
expr.And, expr.Or, expr.Not)): expr.And, expr.Or, expr.Not)):
base = 1 if "float" in exp.a.dtype else 0 base = 1
if isinstance(exp, expr.Not): # unary if isinstance(exp, expr.Not): # unary
return base + _count_flop(exp.a) return base + _count_flop(exp.a)
...@@ -348,6 +348,10 @@ def compute_flop(sch): ...@@ -348,6 +348,10 @@ def compute_flop(sch):
return _count_flop(exp.condition) + max(_count_flop(exp.true_value), return _count_flop(exp.condition) + max(_count_flop(exp.true_value),
_count_flop(exp.false_value)) _count_flop(exp.false_value))
if isinstance(exp, expr.Call): if isinstance(exp, expr.Call):
if exp.call_type == expr.Call.Halide:
# Ignore flops from indexing expressions.
return 0
return sum([_count_flop(x) for x in exp.args]) return sum([_count_flop(x) for x in exp.args])
raise FlopCalculationError("Found unsupported operator in the compute expr") raise FlopCalculationError("Found unsupported operator in the compute expr")
......
...@@ -5,11 +5,17 @@ import numpy as np ...@@ -5,11 +5,17 @@ import numpy as np
from tvm.autotvm.task.task import compute_flop from tvm.autotvm.task.task import compute_flop
def random_dtypes():
"""Return pair of (input, accumulator) dtypes"""
candidates = [("float32", "float32"), ("float16", "float32"), ("int8", "int32")]
return candidates[np.random.choice(len(candidates))]
def test_conv(): def test_conv():
for i in range(5): for i in range(5):
N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)] N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)]
D = tvm.placeholder((N, CI, H, W)) (input_dtype, acc_dtype) = random_dtypes()
K = tvm.placeholder((CO, CI, KH, KW)) D = tvm.placeholder((N, CI, H, W), dtype=input_dtype)
K = tvm.placeholder((CO, CI, KH, KW), dtype=input_dtype)
KH = min(H, KH) KH = min(H, KH)
KW = min(W, KW) KW = min(W, KW)
...@@ -22,7 +28,8 @@ def test_conv(): ...@@ -22,7 +28,8 @@ def test_conv():
OW = (W - KW) + 1 OW = (W - KW) + 1
C = tvm.compute((N, CO, OH, OW), lambda n, co, h, w: C = tvm.compute((N, CO, OH, OW), lambda n, co, h, w:
tvm.sum(D[n][ci][h][w] * K[co][ci][h][w], axis=[ci, kh, kw])) tvm.sum(D[n][ci][h][w].astype(acc_dtype) * K[co][ci][h][w].astype(acc_dtype),
axis=[ci, kh, kw]))
s = tvm.create_schedule([C.op]) s = tvm.create_schedule([C.op])
...@@ -31,15 +38,16 @@ def test_conv(): ...@@ -31,15 +38,16 @@ def test_conv():
def test_pack_gemm(): def test_pack_gemm():
for i in range(5): for i in range(5):
N, L, M = [np.random.randint(10, 128) * 4 for _ in range(3)] N, L, M = [np.random.randint(10, 128) * 4 for _ in range(3)]
A = tvm.placeholder((N, L)) (input_dtype, acc_dtype) = random_dtypes()
B = tvm.placeholder((M, L)) A = tvm.placeholder((N, L), dtype=input_dtype)
B = tvm.placeholder((M, L), dtype=input_dtype)
k = tvm.reduce_axis((0, L)) k = tvm.reduce_axis((0, L))
bn = 4 bn = 4
A_pack = tvm.compute((N // bn, L, bn), lambda i, j, k: A[i * bn + k][j]) A_pack = tvm.compute((N // bn, L, bn), lambda i, j, k: A[i * bn + k][j])
B_pack = tvm.compute((M // bn, L, bn), lambda i, j, k: B[i * bn + k][j]) B_pack = tvm.compute((M // bn, L, bn), lambda i, j, k: B[i * bn + k][j])
C_pack = tvm.compute((N // bn, M // bn, bn, bn), lambda i, j, ii, jj: C_pack = tvm.compute((N // bn, M // bn, bn, bn), lambda i, j, ii, jj:
tvm.sum(A_pack[i, k, ii] * B_pack[j, k, jj], axis=[k])) tvm.sum(A_pack[i, k, ii].astype(acc_dtype) * B_pack[j, k, jj].astype(acc_dtype), axis=[k]))
C = tvm.compute((N, M), lambda i, j: C_pack[i // bn][j // bn][i % bn][j % bn]) C = tvm.compute((N, M), lambda i, j: C_pack[i // bn][j // bn][i % bn][j % bn])
s = tvm.create_schedule([C.op]) s = tvm.create_schedule([C.op])
...@@ -48,14 +56,61 @@ def test_pack_gemm(): ...@@ -48,14 +56,61 @@ def test_pack_gemm():
def test_outer_dot(): def test_outer_dot():
for i in range(5): for i in range(5):
N, M = [np.random.randint(10, 128) * 4 for _ in range(2)] N, M = [np.random.randint(10, 128) * 4 for _ in range(2)]
A = tvm.placeholder((N,)) (input_dtype, acc_dtype) = random_dtypes()
B = tvm.placeholder((M,)) A = tvm.placeholder((N,), dtype=input_dtype)
B = tvm.placeholder((M,), dtype=input_dtype)
C = tvm.compute((N, M), lambda i, j: A[i] * B[j]) C = tvm.compute((N, M), lambda i, j: A[i].astype(acc_dtype) * B[j].astype(acc_dtype))
s = tvm.create_schedule([C.op]) s = tvm.create_schedule([C.op])
assert compute_flop(s) == N * M assert compute_flop(s) == N * M
def test_max_pool():
for i in range(5):
N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)]
(input_dtype, _) = random_dtypes()
D = tvm.placeholder((N, CI, H, W), dtype=input_dtype)
KH = min(H, KH)
KW = min(W, KW)
kh = tvm.reduce_axis((0, KH))
kw = tvm.reduce_axis((0, KW))
OH = (H - KH) + 1
OW = (W - KW) + 1
C = tvm.compute(
(N, CO, OH, OW),
lambda n, co, h, w: tvm.max(D[n][co][h + kh][w + kw], axis=[kh, kw]))
s = tvm.create_schedule([C.op])
assert compute_flop(s) == N * CO * OH * OW * KH * KW
def test_average_pool():
for i in range(5):
N, H, W, CO, CI, KH, KW = [np.random.randint(10, 32) for _ in range(7)]
(input_dtype, acc_dtype) = random_dtypes()
D = tvm.placeholder((N, CI, H, W), dtype=input_dtype)
KH = min(H, KH)
KW = min(W, KW)
kh = tvm.reduce_axis((0, KH))
kw = tvm.reduce_axis((0, KW))
OH = (H - KH) + 1
OW = (W - KW) + 1
C = tvm.compute(
(N, CO, OH, OW),
lambda n, co, h, w: tvm.sum(D[n][co][h + kh][w + kw].astype(acc_dtype) / (KW * KH), axis=[kh, kw]))
s = tvm.create_schedule([C.op])
assert compute_flop(s) == 2 * N * CO * OH * OW * KH * KW
def test_move(): def test_move():
"""No float number operation in simple move. So the estimator should raise an error """ """No float number operation in simple move. So the estimator should raise an error """
N = 1024 N = 1024
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment