Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
2919a3ee
Commit
2919a3ee
authored
Mar 11, 2019
by
Andrew Tulloch
Committed by
Tianqi Chen
Mar 11, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Implement flop support for int8 models (#2776)
parent
d2f29ba5
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
69 additions
and
10 deletions
+69
-10
python/tvm/autotvm/task/task.py
+5
-1
tests/python/unittest/test_autotvm_flop_calculator.py
+64
-9
No files found.
python/tvm/autotvm/task/task.py
View file @
2919a3ee
...
@@ -338,7 +338,7 @@ def compute_flop(sch):
...
@@ -338,7 +338,7 @@ def compute_flop(sch):
expr
.
Max
,
expr
.
Min
,
expr
.
Max
,
expr
.
Min
,
expr
.
EQ
,
expr
.
NE
,
expr
.
LT
,
expr
.
LE
,
expr
.
GT
,
expr
.
GE
,
expr
.
EQ
,
expr
.
NE
,
expr
.
LT
,
expr
.
LE
,
expr
.
GT
,
expr
.
GE
,
expr
.
And
,
expr
.
Or
,
expr
.
Not
)):
expr
.
And
,
expr
.
Or
,
expr
.
Not
)):
base
=
1
if
"float"
in
exp
.
a
.
dtype
else
0
base
=
1
if
isinstance
(
exp
,
expr
.
Not
):
# unary
if
isinstance
(
exp
,
expr
.
Not
):
# unary
return
base
+
_count_flop
(
exp
.
a
)
return
base
+
_count_flop
(
exp
.
a
)
...
@@ -348,6 +348,10 @@ def compute_flop(sch):
...
@@ -348,6 +348,10 @@ def compute_flop(sch):
return
_count_flop
(
exp
.
condition
)
+
max
(
_count_flop
(
exp
.
true_value
),
return
_count_flop
(
exp
.
condition
)
+
max
(
_count_flop
(
exp
.
true_value
),
_count_flop
(
exp
.
false_value
))
_count_flop
(
exp
.
false_value
))
if
isinstance
(
exp
,
expr
.
Call
):
if
isinstance
(
exp
,
expr
.
Call
):
if
exp
.
call_type
==
expr
.
Call
.
Halide
:
# Ignore flops from indexing expressions.
return
0
return
sum
([
_count_flop
(
x
)
for
x
in
exp
.
args
])
return
sum
([
_count_flop
(
x
)
for
x
in
exp
.
args
])
raise
FlopCalculationError
(
"Found unsupported operator in the compute expr"
)
raise
FlopCalculationError
(
"Found unsupported operator in the compute expr"
)
...
...
tests/python/unittest/test_autotvm_flop_calculator.py
View file @
2919a3ee
...
@@ -5,11 +5,17 @@ import numpy as np
...
@@ -5,11 +5,17 @@ import numpy as np
from
tvm.autotvm.task.task
import
compute_flop
from
tvm.autotvm.task.task
import
compute_flop
def
random_dtypes
():
"""Return pair of (input, accumulator) dtypes"""
candidates
=
[(
"float32"
,
"float32"
),
(
"float16"
,
"float32"
),
(
"int8"
,
"int32"
)]
return
candidates
[
np
.
random
.
choice
(
len
(
candidates
))]
def
test_conv
():
def
test_conv
():
for
i
in
range
(
5
):
for
i
in
range
(
5
):
N
,
H
,
W
,
CO
,
CI
,
KH
,
KW
=
[
np
.
random
.
randint
(
10
,
32
)
for
_
in
range
(
7
)]
N
,
H
,
W
,
CO
,
CI
,
KH
,
KW
=
[
np
.
random
.
randint
(
10
,
32
)
for
_
in
range
(
7
)]
D
=
tvm
.
placeholder
((
N
,
CI
,
H
,
W
))
(
input_dtype
,
acc_dtype
)
=
random_dtypes
()
K
=
tvm
.
placeholder
((
CO
,
CI
,
KH
,
KW
))
D
=
tvm
.
placeholder
((
N
,
CI
,
H
,
W
),
dtype
=
input_dtype
)
K
=
tvm
.
placeholder
((
CO
,
CI
,
KH
,
KW
),
dtype
=
input_dtype
)
KH
=
min
(
H
,
KH
)
KH
=
min
(
H
,
KH
)
KW
=
min
(
W
,
KW
)
KW
=
min
(
W
,
KW
)
...
@@ -22,7 +28,8 @@ def test_conv():
...
@@ -22,7 +28,8 @@ def test_conv():
OW
=
(
W
-
KW
)
+
1
OW
=
(
W
-
KW
)
+
1
C
=
tvm
.
compute
((
N
,
CO
,
OH
,
OW
),
lambda
n
,
co
,
h
,
w
:
C
=
tvm
.
compute
((
N
,
CO
,
OH
,
OW
),
lambda
n
,
co
,
h
,
w
:
tvm
.
sum
(
D
[
n
][
ci
][
h
][
w
]
*
K
[
co
][
ci
][
h
][
w
],
axis
=
[
ci
,
kh
,
kw
]))
tvm
.
sum
(
D
[
n
][
ci
][
h
][
w
]
.
astype
(
acc_dtype
)
*
K
[
co
][
ci
][
h
][
w
]
.
astype
(
acc_dtype
),
axis
=
[
ci
,
kh
,
kw
]))
s
=
tvm
.
create_schedule
([
C
.
op
])
s
=
tvm
.
create_schedule
([
C
.
op
])
...
@@ -31,15 +38,16 @@ def test_conv():
...
@@ -31,15 +38,16 @@ def test_conv():
def
test_pack_gemm
():
def
test_pack_gemm
():
for
i
in
range
(
5
):
for
i
in
range
(
5
):
N
,
L
,
M
=
[
np
.
random
.
randint
(
10
,
128
)
*
4
for
_
in
range
(
3
)]
N
,
L
,
M
=
[
np
.
random
.
randint
(
10
,
128
)
*
4
for
_
in
range
(
3
)]
A
=
tvm
.
placeholder
((
N
,
L
))
(
input_dtype
,
acc_dtype
)
=
random_dtypes
()
B
=
tvm
.
placeholder
((
M
,
L
))
A
=
tvm
.
placeholder
((
N
,
L
),
dtype
=
input_dtype
)
B
=
tvm
.
placeholder
((
M
,
L
),
dtype
=
input_dtype
)
k
=
tvm
.
reduce_axis
((
0
,
L
))
k
=
tvm
.
reduce_axis
((
0
,
L
))
bn
=
4
bn
=
4
A_pack
=
tvm
.
compute
((
N
//
bn
,
L
,
bn
),
lambda
i
,
j
,
k
:
A
[
i
*
bn
+
k
][
j
])
A_pack
=
tvm
.
compute
((
N
//
bn
,
L
,
bn
),
lambda
i
,
j
,
k
:
A
[
i
*
bn
+
k
][
j
])
B_pack
=
tvm
.
compute
((
M
//
bn
,
L
,
bn
),
lambda
i
,
j
,
k
:
B
[
i
*
bn
+
k
][
j
])
B_pack
=
tvm
.
compute
((
M
//
bn
,
L
,
bn
),
lambda
i
,
j
,
k
:
B
[
i
*
bn
+
k
][
j
])
C_pack
=
tvm
.
compute
((
N
//
bn
,
M
//
bn
,
bn
,
bn
),
lambda
i
,
j
,
ii
,
jj
:
C_pack
=
tvm
.
compute
((
N
//
bn
,
M
//
bn
,
bn
,
bn
),
lambda
i
,
j
,
ii
,
jj
:
tvm
.
sum
(
A_pack
[
i
,
k
,
ii
]
*
B_pack
[
j
,
k
,
jj
]
,
axis
=
[
k
]))
tvm
.
sum
(
A_pack
[
i
,
k
,
ii
]
.
astype
(
acc_dtype
)
*
B_pack
[
j
,
k
,
jj
]
.
astype
(
acc_dtype
)
,
axis
=
[
k
]))
C
=
tvm
.
compute
((
N
,
M
),
lambda
i
,
j
:
C_pack
[
i
//
bn
][
j
//
bn
][
i
%
bn
][
j
%
bn
])
C
=
tvm
.
compute
((
N
,
M
),
lambda
i
,
j
:
C_pack
[
i
//
bn
][
j
//
bn
][
i
%
bn
][
j
%
bn
])
s
=
tvm
.
create_schedule
([
C
.
op
])
s
=
tvm
.
create_schedule
([
C
.
op
])
...
@@ -48,14 +56,61 @@ def test_pack_gemm():
...
@@ -48,14 +56,61 @@ def test_pack_gemm():
def
test_outer_dot
():
def
test_outer_dot
():
for
i
in
range
(
5
):
for
i
in
range
(
5
):
N
,
M
=
[
np
.
random
.
randint
(
10
,
128
)
*
4
for
_
in
range
(
2
)]
N
,
M
=
[
np
.
random
.
randint
(
10
,
128
)
*
4
for
_
in
range
(
2
)]
A
=
tvm
.
placeholder
((
N
,))
(
input_dtype
,
acc_dtype
)
=
random_dtypes
()
B
=
tvm
.
placeholder
((
M
,))
A
=
tvm
.
placeholder
((
N
,),
dtype
=
input_dtype
)
B
=
tvm
.
placeholder
((
M
,),
dtype
=
input_dtype
)
C
=
tvm
.
compute
((
N
,
M
),
lambda
i
,
j
:
A
[
i
]
*
B
[
j
]
)
C
=
tvm
.
compute
((
N
,
M
),
lambda
i
,
j
:
A
[
i
]
.
astype
(
acc_dtype
)
*
B
[
j
]
.
astype
(
acc_dtype
)
)
s
=
tvm
.
create_schedule
([
C
.
op
])
s
=
tvm
.
create_schedule
([
C
.
op
])
assert
compute_flop
(
s
)
==
N
*
M
assert
compute_flop
(
s
)
==
N
*
M
def
test_max_pool
():
for
i
in
range
(
5
):
N
,
H
,
W
,
CO
,
CI
,
KH
,
KW
=
[
np
.
random
.
randint
(
10
,
32
)
for
_
in
range
(
7
)]
(
input_dtype
,
_
)
=
random_dtypes
()
D
=
tvm
.
placeholder
((
N
,
CI
,
H
,
W
),
dtype
=
input_dtype
)
KH
=
min
(
H
,
KH
)
KW
=
min
(
W
,
KW
)
kh
=
tvm
.
reduce_axis
((
0
,
KH
))
kw
=
tvm
.
reduce_axis
((
0
,
KW
))
OH
=
(
H
-
KH
)
+
1
OW
=
(
W
-
KW
)
+
1
C
=
tvm
.
compute
(
(
N
,
CO
,
OH
,
OW
),
lambda
n
,
co
,
h
,
w
:
tvm
.
max
(
D
[
n
][
co
][
h
+
kh
][
w
+
kw
],
axis
=
[
kh
,
kw
]))
s
=
tvm
.
create_schedule
([
C
.
op
])
assert
compute_flop
(
s
)
==
N
*
CO
*
OH
*
OW
*
KH
*
KW
def
test_average_pool
():
for
i
in
range
(
5
):
N
,
H
,
W
,
CO
,
CI
,
KH
,
KW
=
[
np
.
random
.
randint
(
10
,
32
)
for
_
in
range
(
7
)]
(
input_dtype
,
acc_dtype
)
=
random_dtypes
()
D
=
tvm
.
placeholder
((
N
,
CI
,
H
,
W
),
dtype
=
input_dtype
)
KH
=
min
(
H
,
KH
)
KW
=
min
(
W
,
KW
)
kh
=
tvm
.
reduce_axis
((
0
,
KH
))
kw
=
tvm
.
reduce_axis
((
0
,
KW
))
OH
=
(
H
-
KH
)
+
1
OW
=
(
W
-
KW
)
+
1
C
=
tvm
.
compute
(
(
N
,
CO
,
OH
,
OW
),
lambda
n
,
co
,
h
,
w
:
tvm
.
sum
(
D
[
n
][
co
][
h
+
kh
][
w
+
kw
]
.
astype
(
acc_dtype
)
/
(
KW
*
KH
),
axis
=
[
kh
,
kw
]))
s
=
tvm
.
create_schedule
([
C
.
op
])
assert
compute_flop
(
s
)
==
2
*
N
*
CO
*
OH
*
OW
*
KH
*
KW
def
test_move
():
def
test_move
():
"""No float number operation in simple move. So the estimator should raise an error """
"""No float number operation in simple move. So the estimator should raise an error """
N
=
1024
N
=
1024
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment