Commit 287078c3 by Yao Wang Committed by Yizhi Liu

Pre-allocate buffer for x86 roi_align (#3475)

* Pre-allocate buffer for x86 roi_align

* Fix typo
parent f3dcab42
...@@ -16,14 +16,17 @@ ...@@ -16,14 +16,17 @@
# under the License. # under the License.
# pylint: disable=invalid-name, no-member, too-many-locals, too-many-arguments, undefined-variable, too-many-nested-blocks, too-many-branches, too-many-statements # pylint: disable=invalid-name, no-member, too-many-locals, too-many-arguments, undefined-variable, too-many-nested-blocks, too-many-branches, too-many-statements
"""Non-maximum suppression operator for intel cpu""" """Non-maximum suppression operator for intel cpu"""
import math
import tvm import tvm
from tvm import hybrid from tvm import hybrid
from ..vision.rcnn import roi_align_nchw from ..vision.rcnn import roi_align_nchw
from ..tensor import full
from ..util import get_const_tuple
@hybrid.script @hybrid.script
def roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio): def roi_align_nchw_ir(data, rois, w_pc, pos_pc, pooled_size, spatial_scale, sample_ratio):
"""Hybrid routing fo ROI align operator in NCHW layout. """Hybrid routing fo ROI align operator in NCHW layout.
Parameters Parameters
...@@ -35,6 +38,12 @@ def roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio): ...@@ -35,6 +38,12 @@ def roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio):
2-D with shape [num_roi, 5]. The last dimension should be in format of 2-D with shape [num_roi, 5]. The last dimension should be in format of
[batch_index, w_start, h_start, w_end, h_end] [batch_index, w_start, h_start, w_end, h_end]
w_pc : tvm.Tensor or numpy NDArray
3-D weight pre-calculation buffer
pos_pc : tvm.Tensor or numpy NDArray
3-D position pre-calculation buffer
pooled_size : tvm ConsExpr pooled_size : tvm ConsExpr
[out_height, out_width] [out_height, out_width]
...@@ -57,9 +66,6 @@ def roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio): ...@@ -57,9 +66,6 @@ def roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio):
pooled_size_h = pooled_size[0] pooled_size_h = pooled_size[0]
pooled_size_w = pooled_size[1] pooled_size_w = pooled_size[1]
output = output_tensor((num_rois, channels, pooled_size_h, pooled_size_w), data.dtype) output = output_tensor((num_rois, channels, pooled_size_h, pooled_size_w), data.dtype)
max_num_pc_index = height * width * pooled_size_h * pooled_size_w
w_pc = allocate((num_rois, max_num_pc_index, 4), data.dtype)
pos_pc = allocate((num_rois, max_num_pc_index, 4), "int32")
for n in parallel(num_rois): for n in parallel(num_rois):
roi_batch_index = int32(rois[n, 0]) roi_batch_index = int32(rois[n, 0])
...@@ -76,18 +82,16 @@ def roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio): ...@@ -76,18 +82,16 @@ def roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio):
roi_bin_grid_h = sample_ratio roi_bin_grid_h = sample_ratio
roi_bin_grid_w = roi_bin_grid_h roi_bin_grid_w = roi_bin_grid_h
div_h = roi_h / pooled_size_h rounded_bin_h = int32(bin_h) * 1.0
div_w = roi_w / pooled_size_w rounded_bin_w = int32(bin_w) * 1.0
rounded_div_h = int32(div_h) * 1.0
rounded_div_w = int32(div_w) * 1.0
if sample_ratio <= 0: if sample_ratio <= 0:
# Cannot use ceil function since hybrid script # Cannot use ceil function since hybrid script
# doesn't support Call as indexing # doesn't support Call as indexing
roi_bin_grid_h = int32(div_h) roi_bin_grid_h = int32(bin_h)
roi_bin_grid_w = int32(div_w) roi_bin_grid_w = int32(bin_w)
if rounded_div_h < div_h: if rounded_bin_h < bin_h:
roi_bin_grid_h += 1 roi_bin_grid_h += 1
if rounded_div_w < div_w: if rounded_bin_w < bin_w:
roi_bin_grid_w += 1 roi_bin_grid_w += 1
count = roi_bin_grid_h * roi_bin_grid_w count = roi_bin_grid_h * roi_bin_grid_w
...@@ -211,7 +215,21 @@ def roi_align_nchw_cpu(data, rois, pooled_size, spatial_scale, sample_ratio=-1): ...@@ -211,7 +215,21 @@ def roi_align_nchw_cpu(data, rois, pooled_size, spatial_scale, sample_ratio=-1):
""" """
if not isinstance(pooled_size, (tuple, list)): if not isinstance(pooled_size, (tuple, list)):
pooled_size = (pooled_size, pooled_size) pooled_size = (pooled_size, pooled_size)
# Pre-allocate intermediate buffer
if sample_ratio > 0:
max_roi_bin_grid_w = max_roi_bin_grid_h = sample_ratio
else:
_, _, height, width = get_const_tuple(data.shape)
max_roi_bin_grid_h = math.ceil(height / pooled_size[0])
max_roi_bin_grid_w = math.ceil(width / pooled_size[1])
max_pc_shape = (rois.shape[0], max_roi_bin_grid_h * max_roi_bin_grid_w
* pooled_size[0] * pooled_size[1], 4)
w_pc_buffer = full(max_pc_shape, data.dtype, 0)
pos_pc_buffer = full(max_pc_shape, "int32", 0)
pooled_size = tvm.convert(pooled_size) pooled_size = tvm.convert(pooled_size)
spatial_scale = tvm.const(spatial_scale, "float32") spatial_scale = tvm.const(spatial_scale, "float32")
sample_ratio = tvm.const(sample_ratio, "int32") sample_ratio = tvm.const(sample_ratio, "int32")
return roi_align_nchw_ir(data, rois, pooled_size, spatial_scale, sample_ratio) return roi_align_nchw_ir(data, rois, w_pc_buffer, pos_pc_buffer,
pooled_size, spatial_scale, sample_ratio)
...@@ -306,6 +306,7 @@ def test_roi_align(): ...@@ -306,6 +306,7 @@ def test_roi_align():
verify_roi_align(1, 16, 32, 64, 7, 1.0, -1) verify_roi_align(1, 16, 32, 64, 7, 1.0, -1)
verify_roi_align(4, 16, 32, 64, 7, 0.5, 2) verify_roi_align(4, 16, 32, 64, 7, 0.5, 2)
verify_roi_align(1, 32, 32, 80, 8, 0.0625, 2) verify_roi_align(1, 32, 32, 80, 8, 0.0625, 2)
verify_roi_align(1, 32, 500, 80, 8, 0.0625, 2)
def verify_roi_pool(batch, in_channel, in_size, num_roi, pooled_size, spatial_scale): def verify_roi_pool(batch, in_channel, in_size, num_roi, pooled_size, spatial_scale):
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment