Commit 23727eb4 by Kimish Patel Committed by Tianqi Chen

Added tesnorizeation for avx2 based gemm. (#3982)

* Added tesnorizeation for avx2 based gemm.

Summary:
Tensorized the same region as avx512. Names produce 16x1 int32 results.
Does by doing two sets of AVX2 instructions to do reduction on 8x4 int8
kernel with 1x4 data.

Test Plan:
on avx2 machine:
python tests/python/contrib/test_gemm_avx2_acc32.py

Reviewers:

Subscribers:

Tasks:

Tags:

* Fix lint errors. Removed commented out code.

Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
parent 9baff009
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition
import tvm
import numpy as np
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32_vnni
from topi.x86.tensor_intrin import dot_1x4x16_int8_int8_int32_avx2
def test_avx2_int8_gemm_acc32():
m = 1024
n = 1024
k = 1024
X = tvm.placeholder((m, k), name='X', dtype="uint8")
W = tvm.placeholder((n, k), name='W', dtype="int8")
memory_ops = m * k + n * k + 2 * m * n
gops_per_mm = 2 * m * n * k
def verify(target="llvm -mcpu=core-avx2"):
if not tvm.module.enabled(target):
print("skip because %s is not enabled..." % target)
return
ctx = tvm.context(target, 0)
pc = dot_1x4x16_int8_int8_int32_avx2()
ak = tvm.reduce_axis((0, k), name='k')
packedW = tvm.placeholder(
(n // 16, 16 * (k // 4), 4), name='packedW', dtype="int8")
t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype(
"int32") * packedW[j // 16, (ak // 4) * 16 + j % 16, ak % 4].astype("int32"), axis=ak), name="F")
t_sch = tvm.create_schedule(t_fc.op)
a_x, a_y = t_fc.op.axis
a_k, = t_fc.op.reduce_axis
a_yo, a_yi = t_sch[t_fc].split(a_y, factor=16)
a_xo, a_xi = t_sch[t_fc].split(a_x, factor=32)
a_ko, a_ki = t_sch[t_fc].split(a_k, factor=4)
a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=4)
t_sch[t_fc].reorder(a_yo, a_xo, a_xi, a_koo, a_koi, a_yi, a_ki)
t_sch[t_fc].unroll(a_koi)
t_sch[t_fc].tensorize(a_yi, pc)
t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic")
t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10)
# generate the plain data
a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8")
b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8")
packW = np.random.uniform(1, 10, size=(
n // 16, 16 * (k // 4), 4)).astype("int8")
# This occurs in pre_compute stage
for r_idx in range(n // 16):
for s_idx in range(16 * (k // 4)):
for t_idx in range(4):
packW[r_idx][s_idx][t_idx] = b_[r_idx * 16 + s_idx %
16][(s_idx // 16) * 4 + t_idx]
x = tvm.nd.array(a_, ctx)
w = tvm.nd.array(packW, ctx)
y = tvm.nd.array(np.zeros((m, n), dtype="int32"), ctx)
result = t_evaluator(x, w, y)
gops_per_sec = gops_per_mm / result.mean / 1e9
# verify the correctness
tvm.testing.assert_allclose(y.asnumpy(), np.dot(a_, b_.T), rtol=0)
print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s'.format(
result.mean * 1000, gops_per_sec))
verify()
if __name__ == "__main__":
test_avx2_int8_gemm_acc32()
pass
......@@ -275,3 +275,97 @@ def dot_16x1x16_int8_int8_int32_vnni():
with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})
def dot_1x4x16_int8_int8_int32_avx2():
"""
Int8 dot product by every 4 elements using x86 AVX2 instructions.
This function takes two arrays of int8 datatype -- data[4] and
kernel[16][4] -- and computes a dot product of data[4] with every
4 elements of kernels, resulting in output[16] of int32 datatype.
The pseudo code is as follows.
.. code-block:: c
void dot_1x4x16_int8_int8_int32(int8 data[4], int8 kernel[16][4],
int32 output[16]){
for (int i = 0; i < 16; i++){
out[i] = 0;
for (int k = 0; k < 4; k++){
out[i] += data[k] * kernel[i][k]
}
}
}
Physically, the kernel array sits in two AVX2 vector registers and
the data[4] is broadcasted to AVX2 vector register. This
function returns a TensorIntrin that can be used to tensorize
a schedule.
Returns
-------
intrin : TensorIntrin
The AVX2 int8 TensorIntrin that can be used in tensorizing schedule
"""
int32_lanes = 16 # 16 int32 lanes in AVX2
num_int8_elements = 4 # 4 int8 elements in int32
data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data')
kernel = tvm.placeholder((int32_lanes, num_int8_elements), dtype='int8', name='kernel')
k = tvm.reduce_axis((0, num_int8_elements), name='k')
C = tvm.compute((int32_lanes,),
lambda i: tvm.sum(data[k].astype('int32') *
kernel[i, k].astype('int32'),
axis=k),
name="C")
a_buffer = tvm.decl_buffer(data.shape, dtype='uint8', name="a_buffer",
offset_factor=1,
strides=[1])
b_buffer = tvm.decl_buffer(kernel.shape, dtype='int8', name="b_buffer",
offset_factor=1,
strides=[tvm.var('ldw'), 1])
def _intrin_func(ins, outs):
def _instr(index):
ib = tvm.ir_builder.create()
if index == 1:
ib.emit(outs[0].vstore(0, tvm.const(0, 'int32x16')))
return ib.get()
a_int8 = ins[0].vload([0], "uint8x4")
re_int32 = tvm.call_pure_intrin('int32', 'reinterpret', a_int8)
vec_ai32 = re_int32.astype('int32x8')
vec_a = tvm.call_pure_intrin('int8x32', 'reinterpret', vec_ai32)
vec_b_0 = ins[1].vload([0, 0], "int8x32")
vec_b_1 = ins[1].vload([8, 0], "int8x32")
vec_one = tvm.const(1, "int16x16")
pair_reduction_0 = tvm.call_llvm_intrin('int16x16',
'llvm.x86.avx2.pmadd.ub.sw',
tvm.const(0, 'uint32'),
vec_a, vec_b_0)
quad_reduction_0 = tvm.call_llvm_intrin('int32x8',
'llvm.x86.avx2.pmadd.wd',
tvm.const(0, 'uint32'),
pair_reduction_0, vec_one)
pair_reduction_1 = tvm.call_llvm_intrin('int16x16',
'llvm.x86.avx2.pmadd.ub.sw',
tvm.const(0, 'uint32'),
vec_a, vec_b_1)
quad_reduction_1 = tvm.call_llvm_intrin('int32x8',
'llvm.x86.avx2.pmadd.wd',
tvm.const(0, 'uint32'),
pair_reduction_1, vec_one)
if index == 0:
ib.emit(outs[0].vstore([0], quad_reduction_0))
ib.emit(outs[0].vstore([8], quad_reduction_1))
else:
ib.emit(outs[0].vstore([0], quad_reduction_0 + \
outs[0].vload([0], 'int32x8')))
ib.emit(outs[0].vstore([8], quad_reduction_1 + \
outs[0].vload([8], 'int32x8')))
return ib.get()
# body, reset, update
return _instr(0), _instr(1), _instr(2)
with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment