Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
21e13010
Commit
21e13010
authored
Aug 21, 2018
by
Wuwei Lin
Committed by
Tianqi Chen
Aug 21, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add int8 gemm recipe (#1614)
parent
7cb85d81
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
185 additions
and
0 deletions
+185
-0
topi/recipe/gemm/gemm_int8.py
+185
-0
No files found.
topi/recipe/gemm/gemm_int8.py
0 → 100644
View file @
21e13010
"Example code to perform int8 GEMM"
import
logging
import
sys
import
numpy
as
np
import
tvm
from
tvm
import
autotvm
DO_TUNING
=
True
PRETUNED_INDEX
=
75333
def
intrin_dot
():
n
=
4
# dp4a requires operands packed by 4
x
=
tvm
.
placeholder
((
n
,),
name
=
'x'
,
dtype
=
'int8'
)
y
=
tvm
.
placeholder
((
n
,),
name
=
'y'
,
dtype
=
'int8'
)
k
=
tvm
.
reduce_axis
((
0
,
n
),
name
=
'k'
)
z
=
tvm
.
compute
(
(
1
,),
lambda
_
:
tvm
.
sum
(
x
[
k
]
.
astype
(
'int32'
)
*
y
[
k
]
.
astype
(
'int32'
),
axis
=
k
))
def
intrin_func
(
ins
,
outs
):
xx
,
yy
=
ins
zz
=
outs
[
0
]
ib
=
tvm
.
ir_builder
.
create
()
dp4a
=
zz
.
vstore
(
0
,
tvm
.
call_pure_extern
(
'int32'
,
'__dp4a'
,
xx
.
vload
(
0
,
dtype
=
'int8x4'
),
yy
.
vload
(
0
,
dtype
=
'int8x4'
),
zz
.
vload
(
0
)))
ib
.
emit
(
dp4a
)
body
=
ib
.
get
()
return
body
,
zz
.
vstore
(
0
,
0
),
body
with
tvm
.
build_config
(
data_alignment
=
4
,
offset_factor
=
1
)
as
cfg
:
binds
=
{
t
:
tvm
.
decl_buffer
(
t
.
shape
,
t
.
dtype
,
t
.
op
.
name
,
data_alignment
=
cfg
.
data_alignment
,
offset_factor
=
cfg
.
offset_factor
,
scope
=
'local'
)
for
t
in
[
x
,
y
,
z
]}
return
tvm
.
decl_tensor_intrin
(
z
.
op
,
intrin_func
,
binds
=
binds
)
dot
=
intrin_dot
()
@autotvm.template
def
gemm_int8
(
n
,
m
,
l
):
A
=
tvm
.
placeholder
((
n
,
l
),
name
=
'A'
,
dtype
=
'int8'
)
B
=
tvm
.
placeholder
((
m
,
l
),
name
=
'B'
,
dtype
=
'int8'
)
k
=
tvm
.
reduce_axis
((
0
,
l
),
name
=
'k'
)
C
=
tvm
.
compute
((
n
,
m
),
lambda
i
,
j
:
tvm
.
sum
(
A
[
i
,
k
]
.
astype
(
'int32'
)
*
B
[
j
,
k
]
.
astype
(
'int32'
),
axis
=
k
),
name
=
'C'
)
cfg
=
autotvm
.
get_config
()
s
=
tvm
.
create_schedule
(
C
.
op
)
y
,
x
=
C
.
op
.
axis
AA
=
s
.
cache_read
(
A
,
'shared'
,
[
C
])
BB
=
s
.
cache_read
(
B
,
'shared'
,
[
C
])
AL
=
s
.
cache_read
(
AA
,
'local'
,
[
C
])
BL
=
s
.
cache_read
(
BB
,
'local'
,
[
C
])
CC
=
s
.
cache_write
(
C
,
'local'
)
k
=
CC
.
op
.
reduce_axis
[
0
]
cfg
.
define_split
(
'tile_k'
,
cfg
.
axis
(
k
),
num_outputs
=
3
,
filter
=
lambda
entity
:
entity
.
size
[
2
]
==
4
and
\
entity
.
size
[
0
]
*
2
>=
entity
.
size
[
1
])
ko
,
kt
,
ki
=
cfg
[
'tile_k'
]
.
apply
(
s
,
CC
,
k
)
s
[
CC
]
.
tensorize
(
ki
,
dot
)
block_x
=
tvm
.
thread_axis
(
'blockIdx.x'
)
block_y
=
tvm
.
thread_axis
(
'blockIdx.y'
)
thread_x
=
tvm
.
thread_axis
(
'threadIdx.x'
)
thread_y
=
tvm
.
thread_axis
(
'threadIdx.y'
)
def
block_size_filter
(
entity
):
return
entity
.
size
[
0
]
*
2
>=
entity
.
size
[
1
]
*
2
and
\
entity
.
size
[
1
]
<=
16
and
entity
.
size
[
3
]
<=
4
cfg
.
define_split
(
'tile_y'
,
cfg
.
axis
(
y
),
num_outputs
=
4
,
filter
=
block_size_filter
)
cfg
.
define_split
(
'tile_x'
,
cfg
.
axis
(
x
),
num_outputs
=
4
,
filter
=
block_size_filter
)
by
,
tyz
,
ty
,
yi
=
cfg
[
'tile_y'
]
.
apply
(
s
,
C
,
y
)
bx
,
txz
,
tx
,
xi
=
cfg
[
'tile_x'
]
.
apply
(
s
,
C
,
x
)
s
[
C
]
.
bind
(
by
,
block_y
)
s
[
C
]
.
bind
(
bx
,
block_x
)
s
[
C
]
.
bind
(
tyz
,
tvm
.
thread_axis
(
'vthread'
))
s
[
C
]
.
bind
(
txz
,
tvm
.
thread_axis
(
'vthread'
))
s
[
C
]
.
bind
(
ty
,
thread_y
)
s
[
C
]
.
bind
(
tx
,
thread_x
)
s
[
C
]
.
reorder
(
by
,
bx
,
tyz
,
txz
,
ty
,
tx
,
yi
,
xi
)
s
[
CC
]
.
compute_at
(
s
[
C
],
tx
)
yo
,
xo
=
CC
.
op
.
axis
s
[
CC
]
.
reorder
(
ko
,
kt
,
yo
,
xo
,
ki
)
s
[
CC
]
.
unroll
(
kt
)
for
stage
in
[
AL
,
BL
]:
s
[
stage
]
.
compute_at
(
s
[
CC
],
kt
)
_
,
xi
=
s
[
stage
]
.
split
(
stage
.
op
.
axis
[
1
],
factor
=
4
)
s
[
stage
]
.
vectorize
(
xi
)
s
[
stage
]
.
double_buffer
()
cfg
.
define_knob
(
'storage_align'
,
[
16
,
48
])
for
stage
in
[
AA
,
BB
]:
s
[
stage
]
.
storage_align
(
s
[
stage
]
.
op
.
axis
[
0
],
cfg
[
'storage_align'
]
.
val
,
0
)
s
[
stage
]
.
compute_at
(
s
[
CC
],
ko
)
fused
=
s
[
stage
]
.
fuse
(
*
s
[
stage
]
.
op
.
axis
)
ty
,
tx
=
s
[
stage
]
.
split
(
fused
,
nparts
=
cfg
[
'tile_y'
]
.
size
[
2
])
tx
,
xi
=
s
[
stage
]
.
split
(
tx
,
nparts
=
cfg
[
'tile_x'
]
.
size
[
2
])
_
,
xi
=
s
[
stage
]
.
split
(
xi
,
factor
=
16
)
s
[
stage
]
.
bind
(
ty
,
thread_y
)
s
[
stage
]
.
bind
(
tx
,
thread_x
)
s
[
stage
]
.
vectorize
(
xi
)
cfg
.
define_knob
(
'auto_unroll_max_step'
,
[
512
,
1500
])
s
[
C
]
.
pragma
(
by
,
'auto_unroll_max_step'
,
cfg
[
'auto_unroll_max_step'
]
.
val
)
s
[
C
]
.
pragma
(
by
,
'unroll_explicit'
,
False
)
cfg
.
add_flop
(
n
*
m
*
l
*
2
)
return
s
,
[
A
,
B
,
C
]
if
__name__
==
'__main__'
:
N
=
2048
n
=
m
=
l
=
N
logging
.
basicConfig
(
level
=
logging
.
DEBUG
,
stream
=
sys
.
stdout
)
task
=
autotvm
.
task
.
create
(
gemm_int8
,
args
=
(
n
,
m
,
l
),
target
=
'cuda'
)
print
(
task
.
config_space
)
measure_option
=
autotvm
.
measure_option
(
measure_func
=
'local'
,
number
=
10
,
n_parallel
=
8
,
timeout
=
20
)
log_name
=
'gemm_int8.log'
if
DO_TUNING
:
tuner
=
autotvm
.
tuner
.
XGBTuner
(
task
)
tuner
.
tune
(
n_trial
=
1000
,
measure_option
=
measure_option
,
callbacks
=
[
autotvm
.
callback
.
log_to_file
(
log_name
)])
dispatch_context
=
autotvm
.
apply_history_best
(
log_name
)
best_config
=
dispatch_context
.
query
(
task
.
target
,
task
.
workload
)
print
(
'
\n
Best config:'
)
print
(
best_config
)
else
:
config
=
task
.
config_space
.
get
(
PRETUNED_INDEX
)
dispatch_context
=
autotvm
.
task
.
ApplyConfig
(
config
)
print
(
"Using pretuned config:"
)
print
(
config
)
with
dispatch_context
:
with
tvm
.
target
.
create
(
'cuda'
):
s
,
arg_bufs
=
gemm_int8
(
n
,
m
,
l
)
f
=
tvm
.
build
(
s
,
arg_bufs
,
'cuda'
,
name
=
'gemm_int8'
)
ctx
=
tvm
.
context
(
'cuda'
,
0
)
a_np
=
np
.
random
.
randint
(
size
=
(
n
,
l
),
low
=-
128
,
high
=
127
,
dtype
=
'int8'
)
b_np
=
np
.
random
.
randint
(
size
=
(
m
,
l
),
low
=-
128
,
high
=
127
,
dtype
=
'int8'
)
a
=
tvm
.
nd
.
array
(
a_np
,
ctx
)
b
=
tvm
.
nd
.
array
(
b_np
,
ctx
)
c
=
tvm
.
nd
.
array
(
np
.
zeros
((
n
,
m
),
dtype
=
'int32'
),
ctx
)
f
(
a
,
b
,
c
)
np
.
testing
.
assert_allclose
(
c
.
asnumpy
(),
np
.
dot
(
a_np
.
astype
(
'int32'
),
b_np
.
T
.
astype
(
'int32'
)),
rtol
=
1e-5
)
num_ops
=
2
*
l
*
m
*
n
num_runs
=
1000
timer_f
=
f
.
time_evaluator
(
f
.
entry_name
,
ctx
,
number
=
num_runs
)
t
=
timer_f
(
a
,
b
,
c
)
.
mean
GOPS
=
num_ops
/
(
t
*
1e3
)
/
1e6
print
(
"average time cost of
%
d runs =
%
g ms,
%
g GOPS."
%
(
num_runs
,
t
*
1e3
,
GOPS
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment