Commit 21e13010 by Wuwei Lin Committed by Tianqi Chen

Add int8 gemm recipe (#1614)

parent 7cb85d81
"Example code to perform int8 GEMM"
import logging
import sys
import numpy as np
import tvm
from tvm import autotvm
DO_TUNING = True
PRETUNED_INDEX = 75333
def intrin_dot():
n = 4 # dp4a requires operands packed by 4
x = tvm.placeholder((n,), name='x', dtype='int8')
y = tvm.placeholder((n,), name='y', dtype='int8')
k = tvm.reduce_axis((0, n), name='k')
z = tvm.compute(
(1,), lambda _: tvm.sum(
x[k].astype('int32') * y[k].astype('int32'), axis=k))
def intrin_func(ins, outs):
xx, yy = ins
zz = outs[0]
ib = tvm.ir_builder.create()
dp4a = zz.vstore(0, tvm.call_pure_extern('int32', '__dp4a',
xx.vload(0, dtype='int8x4'),
yy.vload(0, dtype='int8x4'),
zz.vload(0)))
ib.emit(dp4a)
body = ib.get()
return body, zz.vstore(0, 0), body
with tvm.build_config(data_alignment=4, offset_factor=1) as cfg:
binds = {t: tvm.decl_buffer(t.shape, t.dtype, t.op.name,
data_alignment=cfg.data_alignment,
offset_factor=cfg.offset_factor,
scope='local') for t in [x, y, z]}
return tvm.decl_tensor_intrin(z.op, intrin_func, binds=binds)
dot = intrin_dot()
@autotvm.template
def gemm_int8(n, m, l):
A = tvm.placeholder((n, l), name='A', dtype='int8')
B = tvm.placeholder((m, l), name='B', dtype='int8')
k = tvm.reduce_axis((0, l), name='k')
C = tvm.compute((n, m), lambda i, j: tvm.sum(A[i, k].astype('int32') * B[j, k].astype(
'int32'), axis=k), name='C')
cfg = autotvm.get_config()
s = tvm.create_schedule(C.op)
y, x = C.op.axis
AA = s.cache_read(A, 'shared', [C])
BB = s.cache_read(B, 'shared', [C])
AL = s.cache_read(AA, 'local', [C])
BL = s.cache_read(BB, 'local', [C])
CC = s.cache_write(C, 'local')
k = CC.op.reduce_axis[0]
cfg.define_split('tile_k', cfg.axis(k), num_outputs=3,
filter=lambda entity: entity.size[2] == 4 and \
entity.size[0] * 2 >= entity.size[1])
ko, kt, ki = cfg['tile_k'].apply(s, CC, k)
s[CC].tensorize(ki, dot)
block_x = tvm.thread_axis('blockIdx.x')
block_y = tvm.thread_axis('blockIdx.y')
thread_x = tvm.thread_axis('threadIdx.x')
thread_y = tvm.thread_axis('threadIdx.y')
def block_size_filter(entity):
return entity.size[0] * 2 >= entity.size[1] * 2 and \
entity.size[1] <= 16 and entity.size[3] <= 4
cfg.define_split('tile_y', cfg.axis(y), num_outputs=4, filter=block_size_filter)
cfg.define_split('tile_x', cfg.axis(x), num_outputs=4, filter=block_size_filter)
by, tyz, ty, yi = cfg['tile_y'].apply(s, C, y)
bx, txz, tx, xi = cfg['tile_x'].apply(s, C, x)
s[C].bind(by, block_y)
s[C].bind(bx, block_x)
s[C].bind(tyz, tvm.thread_axis('vthread'))
s[C].bind(txz, tvm.thread_axis('vthread'))
s[C].bind(ty, thread_y)
s[C].bind(tx, thread_x)
s[C].reorder(by, bx, tyz, txz, ty, tx, yi, xi)
s[CC].compute_at(s[C], tx)
yo, xo = CC.op.axis
s[CC].reorder(ko, kt, yo, xo, ki)
s[CC].unroll(kt)
for stage in [AL, BL]:
s[stage].compute_at(s[CC], kt)
_, xi = s[stage].split(stage.op.axis[1], factor=4)
s[stage].vectorize(xi)
s[stage].double_buffer()
cfg.define_knob('storage_align', [16, 48])
for stage in [AA, BB]:
s[stage].storage_align(s[stage].op.axis[0],
cfg['storage_align'].val, 0)
s[stage].compute_at(s[CC], ko)
fused = s[stage].fuse(*s[stage].op.axis)
ty, tx = s[stage].split(fused, nparts=cfg['tile_y'].size[2])
tx, xi = s[stage].split(tx, nparts=cfg['tile_x'].size[2])
_, xi = s[stage].split(xi, factor=16)
s[stage].bind(ty, thread_y)
s[stage].bind(tx, thread_x)
s[stage].vectorize(xi)
cfg.define_knob('auto_unroll_max_step', [512, 1500])
s[C].pragma(by, 'auto_unroll_max_step', cfg['auto_unroll_max_step'].val)
s[C].pragma(by, 'unroll_explicit', False)
cfg.add_flop(n*m*l*2)
return s, [A, B, C]
if __name__ == '__main__':
N = 2048
n = m = l = N
logging.basicConfig(level=logging.DEBUG, stream=sys.stdout)
task = autotvm.task.create(gemm_int8, args=(n, m, l), target='cuda')
print(task.config_space)
measure_option = autotvm.measure_option(
measure_func='local', number=10, n_parallel=8, timeout=20)
log_name = 'gemm_int8.log'
if DO_TUNING:
tuner = autotvm.tuner.XGBTuner(task)
tuner.tune(n_trial=1000, measure_option=measure_option,
callbacks=[autotvm.callback.log_to_file(log_name)])
dispatch_context = autotvm.apply_history_best(log_name)
best_config = dispatch_context.query(task.target, task.workload)
print('\nBest config:')
print(best_config)
else:
config = task.config_space.get(PRETUNED_INDEX)
dispatch_context = autotvm.task.ApplyConfig(config)
print("Using pretuned config:")
print(config)
with dispatch_context:
with tvm.target.create('cuda'):
s, arg_bufs = gemm_int8(n, m, l)
f = tvm.build(s, arg_bufs, 'cuda', name='gemm_int8')
ctx = tvm.context('cuda', 0)
a_np = np.random.randint(size=(n, l), low=-128, high=127, dtype='int8')
b_np = np.random.randint(size=(m, l), low=-128, high=127, dtype='int8')
a = tvm.nd.array(a_np, ctx)
b = tvm.nd.array(b_np, ctx)
c = tvm.nd.array(np.zeros((n, m), dtype='int32'), ctx)
f(a, b, c)
np.testing.assert_allclose(
c.asnumpy(),
np.dot(
a_np.astype('int32'),
b_np.T.astype('int32')),
rtol=1e-5)
num_ops = 2 * l * m * n
num_runs = 1000
timer_f = f.time_evaluator(f.entry_name, ctx, number=num_runs)
t = timer_f(a, b, c).mean
GOPS = num_ops / (t * 1e3) / 1e6
print("average time cost of %d runs = %g ms, %g GOPS." %
(num_runs, t * 1e3, GOPS))
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment