Commit 2005f852 by Wuwei Lin Committed by Tianqi Chen

[TOPI] Add dilation argument to conv2d and depthwise_conv2d (#1970)

parent 7a3e389b
......@@ -94,34 +94,26 @@ def compute_conv2d(attrs, inputs, _):
(dilation_h, dilation_w) = dilation
if dilation_h < 1 or dilation_w < 1:
raise ValueError("dilation should be positive value")
elif layout == "NCHW4c" and (dilation_h > 1 or dilation_w > 1):
raise ValueError("not support dilate now")
elif dilation == (1, 1):
kernel = inputs[1]
elif layout == "NCHW":
kernel = topi.nn.dilate(inputs[1], [1, 1, dilation_h, dilation_w])
else: #layout == NHWC
kernel = topi.nn.dilate(inputs[1], [1, dilation_h, dilation_w, 1])
if groups == 1 and layout == 'NCHW4c' and inputs[0].dtype == 'int8':
# pylint: disable=assignment-from-no-return
out = topi.nn.conv2d_NCHWc_int8_prepacked(inputs[0], kernel, strides, padding,
layout, out_dtype=out_dtype)
out = topi.nn.conv2d(inputs[0], inputs[1], strides, padding,
dilation, layout, out_dtype=out_dtype)
# pylint: enable=assignment-from-no-return
elif groups == 1:
out = topi.nn.conv2d(
inputs[0], kernel, strides, padding, layout, out_dtype=out_dtype)
inputs[0], inputs[1], strides, padding, dilation, layout, out_dtype=out_dtype)
elif layout == "NCHW" and \
groups == get_const_int(inputs[0].shape[1]) and \
groups == channels:
out = topi.nn.depthwise_conv2d_nchw(
inputs[0], kernel, strides, padding, out_dtype=out_dtype)
inputs[0], inputs[1], strides, padding, dilation, out_dtype=out_dtype)
elif layout == "NHWC" and \
kernel_layout == "HWOI" and \
groups == get_const_int(inputs[0].shape[3]) and \
groups == channels:
out = topi.nn.depthwise_conv2d_nhwc(
inputs[0], kernel, strides, padding, out_dtype=out_dtype)
inputs[0], inputs[1], strides, padding, dilation, out_dtype=out_dtype)
else:
raise ValueError("not support arbitrary group number for now")
......@@ -144,7 +136,7 @@ def schedule_conv2d(attrs, outs, target):
if groups == 1 and layout == "NCHW":
return topi.generic.schedule_conv2d_nchw(outs)
elif groups == 1 and layout == "NCHW4c":
return topi.generic.schedule_conv2d_NCHWc_int8_prepacked(outs)
return topi.generic.schedule_conv2d_nchw(outs)
elif groups == 1 and layout == "NHWC":
return topi.generic.schedule_conv2d_nhwc(outs)
elif groups == channels and layout == "NCHW":
......@@ -175,7 +167,7 @@ def compute_contrib_conv2d_NCHWc(attrs, inputs, _):
assert dilation == (1, 1), "not support dilate now"
if groups == 1:
# pylint: disable=assignment-from-no-return
out = topi.nn.conv2d_NCHWc(inputs[0], inputs[1], strides, padding,
out = topi.nn.conv2d_NCHWc(inputs[0], inputs[1], strides, padding, dilation,
layout, out_layout, out_dtype)
# pylint: enable=assignment-from-no-return
else:
......@@ -227,7 +219,7 @@ def compute_contrib_conv2d_winograd_without_weight_transform(attrs, inputs, _):
# pylint: disable=assignment-from-no-return
out = topi.nn.conv2d_winograd_without_weight_transform(
inputs[0], inputs[1], strides, padding, layout, out_dtype,
inputs[0], inputs[1], strides, padding, dilation, layout, out_dtype,
tile_size)
if attrs.get_bool("use_bias"):
......
......@@ -20,15 +20,15 @@ AUTOTVM_TOPHUB_ROOT_PATH = os.path.join(os.path.expanduser('~'), ".tvm", "tophub
# the version of each package
PACKAGE_VERSION = {
'arm_cpu': "v0.03",
'llvm': "v0.01",
'arm_cpu': "v0.04",
'llvm': "v0.02",
'cuda': "v0.03",
'rocm': "v0.01",
'opencl': "v0.01",
'mali': "v0.03",
'cuda': "v0.04",
'rocm': "v0.02",
'opencl': "v0.02",
'mali': "v0.04",
'vta': "v0.01",
'vta': "v0.04",
}
logger = logging.getLogger('autotvm')
......
......@@ -175,10 +175,11 @@ def verify_conv2d_scalar_bop(batch, in_size, in_channel, num_filter, kernel, str
print("Running on target: %s" % device)
k = 10.0
dilation = (1, 1)
with tvm.target.create(device):
A = tvm.placeholder((batch, in_channel, in_size, in_size), name='A')
W = tvm.placeholder((num_filter, in_channel, kernel, kernel), name='W')
B = topi.nn.conv2d(A, W, stride, padding)
B = topi.nn.conv2d(A, W, stride, padding, dilation)
if typ == "add":
C = B + k
elif typ == "sub":
......
......@@ -9,11 +9,11 @@ from tvm import autotvm
from ..generic import schedule_conv2d_nchw, schedule_conv2d_winograd_without_weight_transform
from ..util import traverse_inline, get_const_tuple, const_matrix
from ..nn import pad, conv2d, conv2d_alter_layout, conv2d_winograd_without_weight_transform
from ..nn import dilate, pad, conv2d, conv2d_alter_layout, conv2d_winograd_without_weight_transform
from ..nn.util import get_const_int, get_pad_tuple
@autotvm.register_topi_compute(conv2d, 'arm_cpu', ['direct'])
def conv2d_arm_cpu(cfg, data, kernel, strides, padding, layout, out_dtype):
def conv2d_arm_cpu(cfg, data, kernel, strides, padding, dilation, layout, out_dtype):
"""TOPI compute callback for conv2d
Parameters
......@@ -35,6 +35,9 @@ def conv2d_arm_cpu(cfg, data, kernel, strides, padding, layout, out_dtype):
padding : list of two ints
[pad_height, pad_width]
dilation : list of two ints
[dilation_height, dilation_width]
layout : str
layout of data
......@@ -46,7 +49,8 @@ def conv2d_arm_cpu(cfg, data, kernel, strides, padding, layout, out_dtype):
output : tvm.Tensor
4-D with shape [batch, out_channel, out_height, out_width]
"""
return _decl_spatial_pack(cfg, data, kernel, strides, padding, layout, out_dtype, num_tile=2)
return _decl_spatial_pack(cfg, data, kernel, strides, padding, dilation, layout, out_dtype,
num_tile=2)
@autotvm.register_topi_schedule(schedule_conv2d_nchw, 'arm_cpu', ['direct', 'winograd'])
def schedule_conv2d_nchw_arm_cpu(cfg, outs):
......@@ -96,11 +100,22 @@ def schedule_conv2d_nchw_arm_cpu(cfg, outs):
return s
def _decl_spatial_pack(cfg, data, kernel, strides, padding, layout, out_dtype, num_tile):
def _decl_spatial_pack(cfg, data, kernel, strides, padding, dilation, layout, out_dtype, num_tile):
assert layout == "NCHW", "Only support NCHW"
# create workload according to raw arguments
out_dtype = out_dtype or data.dtype
N, CI, IH, IW = get_const_tuple(data.shape)
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
dilation_args = (1, 1, dilation_h, dilation_w) if len(kernel.shape) == 4\
else (1, 1, dilation_h, dilation_w, 1)
kernel = dilate(kernel, dilation_args)
if len(kernel.shape) == 4:
pre_packed = False
CO, _, KH, KW = get_const_tuple(kernel.shape)
......@@ -242,17 +257,27 @@ def _schedule_spatial_pack(cfg, s, data_vec, kernel_vec,
@autotvm.register_topi_compute(conv2d, 'arm_cpu', ['winograd'])
def conv2d_arm_cpu_winograd(cfg, data, kernel, strides, padding, layout, out_dtype):
def conv2d_arm_cpu_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dtype):
""" TOPI compute callback. Use winograd template """
tile_size = 4
return _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size)
return _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout,
out_dtype, tile_size)
def _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size):
def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dtype, tile_size):
N, CI, IH, IW = get_const_tuple(data.shape)
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if len(kernel.shape) == 4:
if dilation_h != 1 or dilation_w != 1:
kernel = dilate(kernel, (1, 1, dilation_h, dilation_w))
pre_computed = False
CO, _, KH, KW = get_const_tuple(kernel.shape)
else:
assert (dilation_h, dilation_w) == (1, 1), "Does not support dilation"
pre_computed = True
H_CAT, W_CAT, CO, CI, VC = get_const_tuple(kernel.shape)
CO *= VC
......@@ -459,9 +484,10 @@ def _schedule_winograd(cfg, s, output, last):
##### REGISTER TOPI COMPUTE / SCHEDULE FOR WINOGRAD WITH WEIGHT TRANSFORM #####
@autotvm.register_topi_compute(conv2d_winograd_without_weight_transform, 'arm_cpu', ['winograd'])
def conv2d_winograd_ww(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size):
def conv2d_winograd_ww(cfg, data, kernel, strides, padding, dilation, layout, out_dtype, tile_size):
"""TOPI compute callback"""
return _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size)
return _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dtype,\
tile_size)
@autotvm.register_topi_schedule(schedule_conv2d_winograd_without_weight_transform,
......
......@@ -5,7 +5,7 @@ from tvm import autotvm
from tvm.contrib import cudnn
from .. import nn, generic
from ..util import get_const_int, get_const_tuple, traverse_inline
from ..util import get_const_tuple, traverse_inline
from .conv2d_direct import schedule_direct_cuda
from .conv2d_winograd import winograd_cuda, schedule_winograd_cuda
......@@ -13,7 +13,7 @@ from .conv2d_int8 import conv2d_NCHWc_int8, schedule_conv2d_NCHWc_int8
@autotvm.register_topi_compute(nn.conv2d, ['cuda', 'gpu'], ['direct', 'winograd', 'int8'])
def conv2d_cuda(cfg, data, kernel, strides, padding, layout='NCHW', out_dtype='float32'):
def conv2d_cuda(cfg, data, kernel, strides, padding, dilation, layout='NCHW', out_dtype='float32'):
"""Conv2D operator for cuda backend.
Parameters
......@@ -36,6 +36,9 @@ def conv2d_cuda(cfg, data, kernel, strides, padding, layout='NCHW', out_dtype='f
padding : int or a list/tuple of two ints
padding size, or [pad_height, pad_width]
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
layout : str
layout of data
......@@ -63,32 +66,15 @@ def conv2d_cuda(cfg, data, kernel, strides, padding, layout='NCHW', out_dtype='f
# handle dilation
stride_h, stride_w = (strides, strides) if isinstance(strides, int) else strides
pad_h, pad_w = (padding, padding) if isinstance(padding, int) else padding
dilation_h, dilation_w = (dilation, dilation) if isinstance(dilation, int) else dilation
OH = (H + 2 * pad_h - KH) // stride_h + 1
OW = (W + 2 * pad_w - KW) // stride_w + 1
cfg.add_flop(2 * N * OH * OW * CO * CI * KH * KW)
dilation_h = dilation_w = 1
kernel_before_dilation = kernel
if isinstance(kernel.op, tvm.tensor.ComputeOp) and "dilate" in kernel.op.tag:
kernel_before_dilation = kernel.op.input_tensors[0]
if layout == 'NCHW':
dilation_h = (get_const_int(kernel.shape[2]) +
get_const_int(kernel_before_dilation.shape[2]) - 1) \
// get_const_int(kernel_before_dilation.shape[2])
dilation_w = (get_const_int(kernel.shape[3]) +
get_const_int(kernel_before_dilation.shape[3]) - 1) \
// get_const_int(kernel_before_dilation.shape[2])
elif layout == 'NHWC':
dilation_h = (get_const_int(kernel.shape[1]) +
get_const_int(kernel_before_dilation.shape[1]) - 1) \
// get_const_int(kernel_before_dilation.shape[1])
dilation_w = (get_const_int(kernel.shape[2]) +
get_const_int(kernel_before_dilation.shape[2]) - 1) \
// get_const_int(kernel_before_dilation.shape[2])
cfg.add_flop(2 * N * OH * OW * CO * CI * ((KH - 1) * dilation_h + 1) *\
((KW - 1) * dilation_w + 1))
return cudnn.conv2d_forward(data,
kernel_before_dilation,
kernel,
stride_h,
stride_w,
pad_h,
......@@ -100,16 +86,15 @@ def conv2d_cuda(cfg, data, kernel, strides, padding, layout='NCHW', out_dtype='f
algo=-1) # let CUDNN choose the best algo
if cfg.template_key == 'winograd':
return winograd_cuda(cfg, data, kernel, strides, padding, layout, out_dtype,
return winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dtype,
pre_computed=False)
if cfg.template_key == 'int8':
return conv2d_NCHWc_int8(cfg, data, kernel, strides, padding, layout, out_dtype,
pre_computed=False)
return conv2d_NCHWc_int8(cfg, data, kernel, strides, padding, dilation, layout, out_dtype)
if layout == 'NCHW':
return nn.conv2d_nchw(data, kernel, strides, padding, out_dtype)
return nn.conv2d_nchw(data, kernel, strides, padding, dilation, out_dtype)
elif layout == 'HWCN':
return nn.conv2d_hwcn(data, kernel, strides, padding, out_dtype)
return nn.conv2d_hwcn(data, kernel, strides, padding, dilation, out_dtype)
else:
raise ValueError("not support this layout {} yet".format(layout))
......@@ -146,7 +131,7 @@ def schedule_conv2d_nchw_cuda(cfg, outs):
if op.tag == 'conv2d_nchw_winograd':
schedule_winograd_cuda(cfg, s, op.output(0), pre_computed=False)
if op.tag == "conv2d_NCHWc_int8":
schedule_conv2d_NCHWc_int8(cfg, s, op.output(0), pre_computed=False)
schedule_conv2d_NCHWc_int8(cfg, s, op.output(0))
traverse_inline(s, outs[0].op, _callback)
return s
......@@ -4,37 +4,13 @@ import tvm
from tvm import autotvm
from .injective import _schedule_injective
from ..generic import schedule_conv2d_NCHWc_int8_prepacked
from .tensor_intrin import dp4a
from ..nn.conv2d import conv2d_NCHWc_int8_prepacked
from ..nn.pad import pad
from ..nn.util import get_pad_tuple
from ..util import get_const_tuple, traverse_inline
from ..util import get_const_tuple
def _conv2d_NCHWc_int8_arg_to_workload(data, kernel, stride, padding, out_dtype):
"""convert argument to workload"""
shape = get_const_tuple(data.shape)
if len(shape) == 5:
N, ic_chunk, H, W, ic_block = shape
raw_data = tvm.placeholder(
(N, ic_chunk*ic_block, H, W), dtype=data.dtype)
else:
raw_data = data
shape = get_const_tuple(kernel.shape)
if len(shape) == 6:
oc_chunk, ic_chunk, KH, KW, oc_block, ic_block = shape
raw_kernel = tvm.placeholder(
(oc_chunk*oc_block, ic_chunk*ic_block, KH, KW), dtype=kernel.dtype)
else:
raw_kernel = kernel
return ('conv2d', ) + autotvm.task.task.args_to_workload(
[raw_data, raw_kernel, stride, padding, "NCHW", out_dtype])
def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype, pre_computed):
def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, dilation, layout, out_dtype):
"""Convolution operator in NCHW[x]c layout for int8.
Parameters
......@@ -57,25 +33,25 @@ def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype, pre
padding: int or a list/tuple of two ints
padding size, or [pad_height, pad_width]
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
layout : str
layout of data
out_dtype : str
The output type. This is used for mixed precision.
pre_computed : str
Whether packed data and kernel are pre-computed
Returns
-------
output : tvm.Tensor
5-D with shape [batch, out_channel_chunk, out_height, out_width, out_channel_block]
"""
assert layout in ["NCHW", "NCHW4c"]
ic_block_factor = 4
oc_block_factor = 4
pre_computed = len(kernel.shape) == 6
if not pre_computed:
batch, channels, height, width = get_const_tuple(data.shape)
assert channels % ic_block_factor == 0, \
......@@ -109,10 +85,15 @@ def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype, pre
packed_kernel.shape)
if isinstance(stride, int):
stride_h, stride_w = stride
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (kernel_h, kernel_w))
# compute graph
......@@ -121,8 +102,8 @@ def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype, pre
pad_data = pad(packed_data, pad_before, pad_after, name="pad_data")
# compute the output shape
out_height = (in_height - kernel_h + pad_top + pad_down) // stride_h + 1
out_width = (in_width - kernel_w + pad_left + pad_right) // stride_w + 1
out_height = (in_height - (kernel_h - 1) * dilation_h - 1 + pad_top + pad_down) // stride_h + 1
out_width = (in_width - (kernel_w - 1) * dilation_w - 1 + pad_left + pad_right) // stride_w + 1
oshape = (batch, oc_chunk, out_height, out_width, oc_block)
......@@ -132,7 +113,8 @@ def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype, pre
kw = tvm.reduce_axis((0, kernel_w), name='kw')
conv = tvm.compute(oshape, lambda n, oc_chunk, oh, ow, oc_block:
tvm.sum(pad_data[n, icc, oh*stride_h+kh, ow*stride_w+kw, icb]
tvm.sum(pad_data[n, icc, oh*stride_h+kh*dilation_h, \
ow*stride_w+kw*dilation_w, icb]
.astype('int32') *
packed_kernel[oc_chunk, icc,
kh, kw, oc_block, icb]
......@@ -141,9 +123,7 @@ def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype, pre
output = tvm.compute(oshape, lambda n, oc_chunk, oh, ow, oc_block:
conv[n, oc_chunk, oh, ow, oc_block].astype(out_dtype),
tag="conv2d_NCHWc_int8",
attrs={"workload": _conv2d_NCHWc_int8_arg_to_workload(
data, kernel, stride, padding, out_dtype)})
tag="conv2d_NCHWc_int8")
# num flop
num_flop = batch * oc_chunk * oc_block * out_height * out_width * \
......@@ -156,7 +136,7 @@ def conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype, pre
_dp4a = dp4a('shared', 'shared', 'local')
def schedule_conv2d_NCHWc_int8(cfg, s, output, pre_computed):
def schedule_conv2d_NCHWc_int8(cfg, s, output):
"""Schedule conv2d int8 NCHWc template"""
workload = output.op.attrs["workload"]
......@@ -171,22 +151,17 @@ def schedule_conv2d_NCHWc_int8(cfg, s, output, pre_computed):
else:
pad_data = packed_data
if not pre_computed:
kernel, = packed_kernel.op.input_tensors
if autotvm.GLOBAL_SCOPE.in_tuning:
# skip this part during tuning to make recrods accurate
# this part will be pre-computed during NNVM's pre-compute optimization pass
s[packed_data].pragma(s[packed_data].op.axis[0], "debug_skip_region")
s[packed_kernel].pragma(
s[packed_kernel].op.axis[0], "debug_skip_region")
s[packed_kernel].pragma(s[packed_kernel].op.axis[0], "debug_skip_region")
else:
if isinstance(packed_kernel.op, tvm.tensor.ComputeOp) and\
packed_kernel.name == 'packed_kernel':
# data and kernel are not pre-computed, schedule layout transform here
_schedule_injective(packed_data.op, s)
_schedule_injective(packed_kernel.op, s)
else:
kernel = packed_kernel
if isinstance(kernel.op, tvm.tensor.ComputeOp) and "dilate" in kernel.op.tag:
s[kernel].compute_inline()
if pad_data != packed_data:
s[pad_data].compute_inline()
......@@ -310,43 +285,3 @@ def schedule_conv2d_NCHWc_int8(cfg, s, output, pre_computed):
s[output].pragma(kernel_scope, 'unroll_explicit', False)
return s
@conv2d_NCHWc_int8_prepacked.register(["cuda"])
@autotvm.task.dispatcher
def conv2d_NCHWc_int8_prepacked_dispatcher(data, kernel, stride, padding, layout, out_dtype):
assert layout == 'NCHW4c'
return _conv2d_NCHWc_int8_arg_to_workload(data, kernel, stride, padding, out_dtype)
@conv2d_NCHWc_int8_prepacked_dispatcher.register("int8")
def _decl_conv2d_NCHWc_int8_prepacked(cfg, data, kernel, stride, padding, layout, out_dtype):
return conv2d_NCHWc_int8(cfg, data, kernel, stride, padding, layout, out_dtype,
pre_computed=True)
@autotvm.register_topi_schedule(schedule_conv2d_NCHWc_int8_prepacked, ["cuda"], ["int8"])
def schedule_conv2d_NCHWc_int8_prepacked_cuda(cfg, outs):
"""TOPI schedule callback of conv2d for cuda
Parameters
----------
cfg: ConfigEntity
The config for this template
outs: Array of Tensor
The computation graph description of conv2d
in the format of an array of tensors.
Returns
-------
s: Schedule
The computation schedule for conv2d.
"""
s = tvm.create_schedule([x.op for x in outs])
def _callback(op):
if 'conv2d_NCHWc_int8' in op.tag:
schedule_conv2d_NCHWc_int8(cfg, s, op.output(0), pre_computed=True)
traverse_inline(s, outs[0].op, _callback)
return s
......@@ -7,23 +7,10 @@ import tvm
from tvm import autotvm
from .. import nn
from ..nn import conv2d_winograd_without_weight_transform
from ..nn import conv2d, conv2d_winograd_without_weight_transform
from ..util import get_const_int, get_const_tuple, const_matrix, traverse_inline
from ..generic import schedule_conv2d_winograd_without_weight_transform
def _winograd_conv_arg_to_workload(data, kernel, strides, padding, layout, out_dtype):
"""convert argument to workload"""
K = 3
shape = get_const_tuple(kernel.shape)
if shape[-2:] == (K, K):
raw_kernel = kernel
else: # pre-transformed
_, _, CI, CO = shape
raw_kernel = tvm.placeholder((CO, CI, K, K), dtype=kernel.dtype)
return ('conv2d', ) + autotvm.task.args_to_workload(
[data, raw_kernel, strides, padding, layout, out_dtype])
def _infer_tile_size(data, kernel):
N, CI, H, W = get_const_tuple(data.shape)
......@@ -32,7 +19,7 @@ def _infer_tile_size(data, kernel):
return 4
return 2
def winograd_cuda(cfg, data, kernel, strides, padding, layout, out_dtype, pre_computed):
def winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dtype, pre_computed):
"""Compute declaration for winograd"""
assert layout == 'NCHW'
......@@ -41,12 +28,20 @@ def winograd_cuda(cfg, data, kernel, strides, padding, layout, out_dtype, pre_co
N, CI, H, W = get_const_tuple(data.shape)
if not pre_computed: # kernel tensor is raw tensor, do strict check
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
kernel = dilate(kernel, (1, 1, dilation_h, dilation_w))
CO, CI, KH, KW = get_const_tuple(kernel.shape)
HPAD, WPAD, _, _ = nn.get_pad_tuple(padding, kernel)
HSTR, WSTR = (strides, strides) if isinstance(strides, int) else strides
assert HSTR == 1 and WSTR == 1 and HPAD == 1 and WPAD == 1 and KH == 3 and KW == 3
else: # kernel tensor is pre-transfomred. this op is created by
# alter op layout, do not check
# dilation is not supported
HSTR = WSTR = 1
HPAD = WPAD = 1
KH = KW = 3
......@@ -150,9 +145,7 @@ def winograd_cuda(cfg, data, kernel, strides, padding, layout, out_dtype, pre_co
# output
output = tvm.compute((N, CO, H, W), lambda n, co, h, w:
inverse[co][n * nH * nW + (h // m) * nW + w // m][h % m][w % m],
name='output', tag='conv2d_nchw_winograd',
attrs={"workload": _winograd_conv_arg_to_workload(
data, kernel, strides, padding, layout, out_dtype)})
name='output', tag='conv2d_nchw_winograd')
cfg.add_flop(2 * N * CO * H * W * CI * KH * KW)
return output
......@@ -314,16 +307,11 @@ def schedule_winograd_cuda(cfg, s, output, pre_computed):
return s
##### REGISTER TOPI COMPUTE / SCHEDULE FOR WINOGRAD WITH WEIGHT TRANSFORM #####
@conv2d_winograd_without_weight_transform.register(['cuda', 'gpu'])
@autotvm.task.dispatcher
def winograd_ww_config_dispatcher_cuda(data, kernel, strides, padding, layout, out_dtype,
tile_size):
return _winograd_conv_arg_to_workload(data, kernel, strides, padding, layout, out_dtype)
@winograd_ww_config_dispatcher_cuda.register(['winograd'])
def decl_winograd_ww(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size):
return winograd_cuda(cfg, data, kernel, strides, padding, layout, out_dtype, pre_computed=True)
@autotvm.register_topi_compute(conv2d_winograd_without_weight_transform,
['cuda', 'gpu'], ['winograd'])
def conv2d_winograd_ww(cfg, data, kernel, strides, padding, dilation, layout, out_dtype, tile_size):
return winograd_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dtype,
pre_computed=True)
@autotvm.register_topi_schedule(schedule_conv2d_winograd_without_weight_transform,
......@@ -352,36 +340,54 @@ def _alter_conv2d_layout(attrs, inputs, tinfos):
new_attrs = {k: attrs[k] for k in attrs.keys()}
assert attrs.get_int_tuple("dilation") == (1, 1), "Does not support dilation " \
"when alter_op_layout is enabled"
strides = attrs.get_int_tuple("strides")
padding = attrs.get_int_tuple("padding")
dilation = attrs.get_int_tuple("dilation")
groups = attrs.get_int('groups')
layout = attrs["layout"]
out_dtype = attrs["out_dtype"]
out_dtype = tinfos[0].dtype if out_dtype == "same" else out_dtype
data, kernel = tinfos[0:2]
N, CI, H, W = get_const_tuple(data.shape)
CO, _, KH, KW = get_const_tuple(kernel.shape)
dispatch_ctx = autotvm.DispatchContext.current
if groups == 1:
# query config of this workload
workload = ('conv2d',) + autotvm.task.args_to_workload(
[tinfos[0], tinfos[1], strides, padding, layout, out_dtype])
cfg = autotvm.DispatchContext.current.query(tvm.target.current_target(), workload)
[tinfos[0], tinfos[1], strides, padding, dilation, layout, out_dtype])
target = tvm.target.current_target()
cfg = autotvm.DispatchContext.current.query(target, workload)
if cfg.is_fallback: # if is fallback, clear query cache and return None
autotvm.task.clear_fallback_cache(tvm.target.current_target(), workload)
autotvm.task.clear_fallback_cache(target, workload)
return None
if cfg.template_key == 'direct':
return None
if cfg.template_key == 'int8':
assert 'cuda' in tvm.target.current_target().keys
new_attrs['layout'] = 'NCHW4c'
new_attrs['out_layout'] = 'NCHW4c'
assert 'cuda' in target.keys
new_layout = 'NCHW4c'
new_attrs['layout'] = new_layout
new_attrs['out_layout'] = new_layout
new_attrs['kernel_layout'] = 'OIHW4o4i'
ic_block_factor = oc_block_factor = 4
new_data = tvm.placeholder((N, CI // ic_block_factor, H, W, ic_block_factor),
dtype=data.dtype)
new_kernel = tvm.placeholder((CO // oc_block_factor, CI // ic_block_factor, KH, KW,\
oc_block_factor, ic_block_factor), dtype=kernel.dtype)
new_workload = autotvm.task.args_to_workload(
[new_data, new_kernel, strides, padding, dilation, new_layout, out_dtype],
conv2d
)
dispatch_ctx.update(target, new_workload, cfg)
return sym.conv2d(*copy_inputs, **new_attrs)
if attrs.get_int_tuple("dilation") != (1, 1):
return None
# pre-compute weight transformation in winograd
tile_size = _infer_tile_size(tinfos[0], tinfos[1])
......@@ -390,6 +396,15 @@ def _alter_conv2d_layout(attrs, inputs, tinfos):
weight = sym.transpose(weight, axes=[0, 1, 3, 2])
copy_inputs[1] = weight
new_attrs['tile_size'] = tile_size
new_data = data
new_weight = tvm.placeholder((KH + tile_size - 1, KW + tile_size - 1, CI, CO),
dtype=kernel.dtype)
new_workload = autotvm.task.args_to_workload(
[new_data, new_weight, strides, padding, dilation, layout, out_dtype, tile_size],
conv2d_winograd_without_weight_transform
)
dispatch_ctx.update(target, new_workload, cfg)
return sym.contrib.conv2d_winograd_without_weight_transform(*copy_inputs, **new_attrs)
# do nothing for depthwise convolution
......
......@@ -122,24 +122,6 @@ def schedule_conv2d_winograd_without_weight_transform(outs):
@tvm.target.generic_func
def schedule_conv2d_NCHWc_int8_prepacked(outs):
"""Schedule for conv2d NCHWc int8 with prepacked data and kernel
Parameters
----------
outs: Array of Tensor
The computation graph description of this operator
in the format of an array of tensors.
Returns
-------
sch: Schedule
The computation schedule for the op.
"""
return _default_schedule(outs, False)
@tvm.target.generic_func
def schedule_conv2d_transpose_nchw(outs):
"""Schedule for conv2d_transpose_nchw
......
......@@ -16,7 +16,7 @@ from ..arm_cpu.conv2d import _decl_spatial_pack, _alter_conv2d_layout_arm
@autotvm.register_topi_compute(conv2d, 'mali', ['direct'])
def conv2d_mali(cfg, data, kernel, strides, padding, layout, out_dtype):
def conv2d_mali(cfg, data, kernel, strides, padding, dilation, layout, out_dtype):
"""TOPI compute callback for conv2d
Parameters
......@@ -38,6 +38,9 @@ def conv2d_mali(cfg, data, kernel, strides, padding, layout, out_dtype):
padding : list of two ints
[pad_height, pad_width]
dilation : list of two ints
[dilation_height, dilation_width]
layout : str
layout of data
......@@ -49,7 +52,8 @@ def conv2d_mali(cfg, data, kernel, strides, padding, layout, out_dtype):
output : tvm.Tensor
4-D with shape [batch, out_channel, out_height, out_width]
"""
return _decl_spatial_pack(cfg, data, kernel, strides, padding, layout, out_dtype, num_tile=3)
return _decl_spatial_pack(cfg, data, kernel, strides, padding, dilation, layout, out_dtype,
num_tile=3)
@autotvm.register_topi_schedule(schedule_conv2d_nchw, 'mali', ['direct', 'winograd'])
def schedule_conv2d_nchw_mali(cfg, outs):
......@@ -175,16 +179,26 @@ def _pick_tile_size(data, kernel):
return 2
@autotvm.register_topi_compute(conv2d, 'mali', ['winograd'])
def conv2d_mali_winograd(cfg, data, kernel, strides, padding, layout, out_dtype):
def conv2d_mali_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dtype):
tile_size = _pick_tile_size(data, kernel)
return _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size)
return _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dtype,
tile_size)
def _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size):
def _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dtype, tile_size):
N, CI, IH, IW = get_const_tuple(data.shape)
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if len(kernel.shape) == 4:
if dilation_h != 1 or dilation_w != 1:
kernel = dilate(kernel, (1, 1, dilation_h, dilation_w))
pre_computed = False
CO, _, KH, KW = get_const_tuple(kernel.shape)
else:
assert (dilation_h, dilation_w) == (1, 1), "Does not support dilation"
pre_computed = True
H_CAT, W_CAT, CO, CI, VC = get_const_tuple(kernel.shape)
CO *= VC
......@@ -428,7 +442,8 @@ def _schedule_winograd(cfg, s, op):
@autotvm.register_topi_compute(conv2d_winograd_without_weight_transform, 'mali', ['winograd'])
def conv2d_winograd_ww(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size):
"""TOPI compute callback"""
return _decl_winograd(cfg, data, kernel, strides, padding, layout, out_dtype, tile_size)
return _decl_winograd(cfg, data, kernel, strides, padding, dilation, layout, out_dtype,
tile_size)
@autotvm.register_topi_schedule(schedule_conv2d_winograd_without_weight_transform,
......
......@@ -6,6 +6,7 @@ from collections import namedtuple
import numpy as np
import tvm
from .dilate import dilate
from .pad import pad
from .util import get_pad_tuple
from ..util import simplify, const_matrix, get_const_tuple
......@@ -16,7 +17,7 @@ Workload = namedtuple('Workload',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
@tvm.target.generic_func
def conv2d(input, filter, strides, padding, layout='NCHW', out_dtype=None):
def conv2d(input, filter, strides, padding, dilation, layout='NCHW', out_dtype=None):
"""Conv2D operator.
Parameters
......@@ -33,6 +34,9 @@ def conv2d(input, filter, strides, padding, layout='NCHW', out_dtype=None):
padding : int or a list/tuple of two ints
padding size, or [pad_height, pad_width]
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
layout : str
layout of data
......@@ -44,11 +48,11 @@ def conv2d(input, filter, strides, padding, layout='NCHW', out_dtype=None):
# search platform specific declaration first
# default declaration
if layout == 'NCHW':
return conv2d_nchw(input, filter, strides, padding, out_dtype)
return conv2d_nchw(input, filter, strides, padding, dilation, out_dtype)
elif layout == 'HWCN':
return conv2d_hwcn(input, filter, strides, padding, out_dtype)
return conv2d_hwcn(input, filter, strides, padding, dilation, out_dtype)
elif layout == 'NHWC':
return conv2d_nhwc(input, filter, strides, padding, out_dtype)
return conv2d_nhwc(input, filter, strides, padding, dilation, out_dtype)
else:
raise ValueError("not support this layout {} yet".format(layout))
......@@ -85,7 +89,7 @@ def _get_workload(data, kernel, stride, padding, out_dtype):
return Workload(data.dtype, out_dtype, IH, IW, CI, CO, KH, KW, HPAD, WPAD, HSTR, WSTR)
def conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
def conv2d_nchw(Input, Filter, stride, padding, dilation, out_dtype=None):
"""Convolution operator in NCHW layout.
Parameters
......@@ -102,6 +106,9 @@ def conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
padding : int or str
Padding size, or ['VALID', 'SAME']
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
Returns
-------
Output : tvm.Tensor
......@@ -110,12 +117,22 @@ def conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
if out_dtype is None:
out_dtype = Input.dtype
assert isinstance(stride, int) or len(stride) == 2
batch, in_channel, in_height, in_width = Input.shape
num_filter, channel, kernel_h, kernel_w = Filter.shape
assert isinstance(dilation, int) or len(dilation) == 2
if isinstance(stride, int):
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
Filter = dilate(Filter, (1, 1, dilation_h, dilation_w))
batch, in_channel, in_height, in_width = Input.shape
num_filter, channel, kernel_h, kernel_w = Filter.shape
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (kernel_h, kernel_w))
# compute the output shape
......@@ -138,7 +155,7 @@ def conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
axis=[rc, ry, rx]), tag="conv2d_nchw")
def conv2d_hwcn(Input, Filter, stride, padding, out_dtype=None):
def conv2d_hwcn(Input, Filter, stride, padding, dilation, out_dtype=None):
"""Convolution operator in HWCN layout.
Parameters
......@@ -155,6 +172,9 @@ def conv2d_hwcn(Input, Filter, stride, padding, out_dtype=None):
padding : int or str
Padding size, or ['VALID', 'SAME']
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
Returns
-------
output : tvm.Tensor
......@@ -163,13 +183,23 @@ def conv2d_hwcn(Input, Filter, stride, padding, out_dtype=None):
if out_dtype is None:
out_dtype = Input.dtype
assert isinstance(stride, int) or len(stride) == 2
in_height, in_width, in_channel, batch = Input.shape
kernel_h, kernel_w, channel, num_filter = Filter.shape
assert isinstance(dilation, int) or len(dilation) == 2
if isinstance(stride, int):
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
Filter = dilate(Filter, (dilation_h, dilation_w, 1, 1))
in_height, in_width, in_channel, batch = Input.shape
kernel_h, kernel_w, channel, num_filter = Filter.shape
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (kernel_h, kernel_w))
# compute the output shape
......@@ -191,7 +221,7 @@ def conv2d_hwcn(Input, Filter, stride, padding, out_dtype=None):
return Output
def conv2d_nhwc(Input, Filter, stride, padding, out_dtype='float32'):
def conv2d_nhwc(Input, Filter, stride, padding, dilation, out_dtype='float32'):
"""Convolution operator in NHWC layout.
Parameters
......@@ -208,19 +238,32 @@ def conv2d_nhwc(Input, Filter, stride, padding, out_dtype='float32'):
padding : int or str
Padding size, or ['VALID', 'SAME']
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
Returns
-------
output : tvm.Tensor
4-D with shape [batch, out_height, out_width, out_channel]
"""
assert isinstance(stride, int) or len(stride) == 2
batch, in_height, in_width, in_channel = Input.shape
kernel_h, kernel_w, channel, num_filter = Filter.shape
assert isinstance(dilation, int) or len(dilation) == 2
if isinstance(stride, int):
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
Filter = dilate(Filter, (dilation_h, dilation_w, 1, 1))
batch, in_height, in_width, in_channel = Input.shape
kernel_h, kernel_w, channel, num_filter = Filter.shape
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (kernel_h, kernel_w))
# compute the output shape
......@@ -243,7 +286,7 @@ def conv2d_nhwc(Input, Filter, stride, padding, out_dtype='float32'):
@tvm.target.generic_func
def conv2d_NCHWc(data, kernel, stride, padding, layout, out_layout, out_dtype='float32'):
def conv2d_NCHWc(data, kernel, stride, padding, dilation, layout, out_layout, out_dtype='float32'):
"""Conv2D operator for nChw[x]c layout.
Parameters
......@@ -262,6 +305,9 @@ def conv2d_NCHWc(data, kernel, stride, padding, layout, out_layout, out_dtype='f
padding : int or a list/tuple of two ints
padding size, or [pad_height, pad_width]
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
layout : str
Input data layout
......@@ -333,7 +379,7 @@ def conv2d_winograd_weight_transform(kernel, tile_size):
@tvm.target.generic_func
def conv2d_winograd_without_weight_transform(input, filter, strides, padding,
def conv2d_winograd_without_weight_transform(input, filter, strides, padding, dilation,
layout, out_dtype, tile_size):
"""Compute convolution in winograd algorithm. The filter is supposed to be transformed
in advance.
......@@ -357,37 +403,3 @@ def conv2d_winograd_without_weight_transform(input, filter, strides, padding,
4-D with shape [batch, out_height, out_width, out_channel]
"""
raise ValueError("missing register for topi.nn.conv2d_winograd_without_weight_transform")
@tvm.target.generic_func
def conv2d_NCHWc_int8_prepacked(data, kernel, stride, padding, layout, out_dtype):
"""Convolution operator in NCHW[x]c layout for int8. Data and kernel should be packed in
advance.
Parameters
----------
data : tvm.Tensor
5-D with shape [batch, in_channel_chunk, in_height, in_width, in_channel_block]
kernel : tvm.Tensor
6-D with shape [num_filter_chunk, in_channel_chunk, filter_height,
filter_width, num_filter_block, in_channel_block]
stride : int or a list/tuple of two ints
stride size, or [stride_height, stride_width]
padding: int or a list/tuple of two ints
padding size, or [pad_height, pad_width]
layout : str
layout of data
out_dtype: str
The output type. This is used for mixed precision.
Returns
-------
output : tvm.Tensor
5-D with shape [batch, out_channel_chunk, out_height, out_width, out_channel_block]
"""
raise ValueError("missing register for topi.nn.conv2d_NCHWc_int8_prepacked")
......@@ -10,7 +10,7 @@ from ..util import simplify
@tvm.target.generic_func
def depthwise_conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
def depthwise_conv2d_nchw(Input, Filter, stride, padding, dilation, out_dtype=None):
"""Depthwise convolution nchw forward operator.
Parameters
......@@ -27,6 +27,9 @@ def depthwise_conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
padding : int or str
Padding size, or ['VALID', 'SAME']
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
out_dtype: str, optional
Output data type
......@@ -37,13 +40,23 @@ def depthwise_conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
"""
out_dtype = Input.dtype if out_dtype is None else out_dtype
batch, in_channel, in_height, in_width = Input.shape
filter_channel, channel_multiplier, filter_height, filter_width = Filter.shape
if isinstance(stride, int):
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
Filter = dilate(Filter, (1, 1, dilation_h, dilation_w))
batch, in_channel, in_height, in_width = Input.shape
# shape of dilated kernel
filter_channel, channel_multiplier, filter_height, filter_width = Filter.shape
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (filter_height, filter_width))
out_channel = simplify(in_channel * channel_multiplier)
......@@ -68,7 +81,7 @@ def depthwise_conv2d_nchw(Input, Filter, stride, padding, out_dtype=None):
@tvm.target.generic_func
def depthwise_conv2d_nhwc(Input, Filter, stride, padding, out_dtype=None):
def depthwise_conv2d_nhwc(Input, Filter, stride, padding, dilation, out_dtype=None):
"""Depthwise convolution nhwc forward operator.
Parameters
......@@ -85,6 +98,9 @@ def depthwise_conv2d_nhwc(Input, Filter, stride, padding, out_dtype=None):
padding : int or str
Padding size, or ['VALID', 'SAME']
dilation: int or a list/tuple of two ints
dilation size, or [dilation_height, dilation_width]
out_dtype: str, optional
Output data type
......@@ -95,13 +111,23 @@ def depthwise_conv2d_nhwc(Input, Filter, stride, padding, out_dtype=None):
"""
out_dtype = Input.dtype if out_dtype is None else out_dtype
batch, in_height, in_width, in_channel = Input.shape
filter_height, filter_width, filter_channel, channel_multiplier = Filter.shape
if isinstance(stride, int):
stride_h = stride_w = stride
else:
stride_h, stride_w = stride
if isinstance(dilation, int):
dilation_h = dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
Filter = dilate(Filter, (dilation_h, dilation_w, 1, 1))
batch, in_height, in_width, in_channel = Input.shape
# shape of dilated kernel
filter_height, filter_width, filter_channel, channel_multiplier = Filter.shape
pad_top, pad_left, pad_down, pad_right = get_pad_tuple(
padding, (filter_height, filter_width))
out_channel = simplify(in_channel * channel_multiplier)
......
......@@ -5,11 +5,11 @@ from tvm import autotvm
from tvm.contrib import miopen
from .. import nn, generic
from ..util import get_const_int, get_const_tuple
from ..util import get_const_tuple
from ..cuda.conv2d import conv2d_cuda, schedule_conv2d_nchw_cuda
@autotvm.register_topi_compute(nn.conv2d, 'rocm', ['direct', 'winograd'])
def conv2d_rocm(cfg, data, kernel, strides, padding, layout='NCHW', out_dtype='float32'):
def conv2d_rocm(cfg, data, kernel, strides, padding, dilation, layout='NCHW', out_dtype='float32'):
"""Conv2D operator for rocm backend.
Parameters
......@@ -47,29 +47,12 @@ def conv2d_rocm(cfg, data, kernel, strides, padding, layout='NCHW', out_dtype='f
# handle dilation
stride_h, stride_w = (strides, strides) if isinstance(strides, int) else strides
pad_h, pad_w = (padding, padding) if isinstance(padding, int) else padding
dilation_h, dilation_w = (dilation, dilation) if isinstance(dilation, int) else dilation
OH = (H + 2 * pad_h - KH) // stride_h + 1
OW = (W + 2 * pad_w - KW) // stride_w + 1
cfg.add_flop(2 * N * OH * OW * CO * CI * KH * KW)
dilation_h = dilation_w = 1
kernel_before_dilation = kernel
if isinstance(kernel.op, tvm.tensor.ComputeOp) and "dilate" in kernel.op.tag:
kernel_before_dilation = kernel.op.input_tensors[0]
if layout == 'NCHW':
dilation_h = (get_const_int(kernel.shape[2]) +
get_const_int(kernel_before_dilation.shape[2]) - 1) \
// get_const_int(kernel_before_dilation.shape[2])
dilation_w = (get_const_int(kernel.shape[3]) +
get_const_int(kernel_before_dilation.shape[3]) - 1) \
// get_const_int(kernel_before_dilation.shape[2])
elif layout == 'NHWC':
dilation_h = (get_const_int(kernel.shape[1]) +
get_const_int(kernel_before_dilation.shape[1]) - 1) \
// get_const_int(kernel_before_dilation.shape[1])
dilation_w = (get_const_int(kernel.shape[2]) +
get_const_int(kernel_before_dilation.shape[2]) - 1) \
// get_const_int(kernel_before_dilation.shape[2])
cfg.add_flop(2 * N * OH * OW * CO * CI * ((KH - 1) * dilation_h + 1) *\
((KW - 1) * dilation_w + 1))
return miopen.conv2d_forward(data,
kernel_before_dilation,
......@@ -81,7 +64,7 @@ def conv2d_rocm(cfg, data, kernel, strides, padding, layout='NCHW', out_dtype='f
dilation_w,
conv_mode=0)
return conv2d_cuda(cfg, data, kernel, strides, padding, layout, out_dtype)
return conv2d_cuda(cfg, data, kernel, strides, padding, dilation, layout, out_dtype)
@autotvm.register_topi_schedule(generic.schedule_conv2d_nchw, 'rocm', ["direct", 'winograd'])
......
......@@ -8,6 +8,7 @@ from .. import generic, tag
from .. import nn
from ..util import get_const_tuple
from ..nn.conv2d import conv2d, conv2d_NCHWc, conv2d_alter_layout, _get_workload
from ..nn.dilate import dilate
from ..nn.pad import pad
from . import conv2d_avx_1x1, conv2d_avx_common
......@@ -38,7 +39,7 @@ def _get_default_config(cfg, workload):
conv2d_avx_common._fallback_schedule(cfg, workload, fp32_vec_len)
def _create_tuning_space(cfg, data, kernel, strides, padding, layout):
def _create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout):
"""Create schedule configuration from input arguments"""
dshape = get_const_tuple(data.shape)
kshape = get_const_tuple(kernel.shape)
......@@ -65,28 +66,39 @@ def _create_tuning_space(cfg, data, kernel, strides, padding, layout):
@autotvm.register_topi_compute(conv2d, 'cpu', 'direct')
def _declaration_conv(cfg, data, kernel, strides, padding, layout, out_dtype):
def _declaration_conv(cfg, data, kernel, strides, padding, dilation, layout, out_dtype):
out_dtype = data.dtype if out_dtype is None else out_dtype
padding = padding if isinstance(padding, (tuple, list)) else (padding, padding)
strides = strides if isinstance(strides, (tuple, list)) else (strides, strides)
dilation = dilation if isinstance(dilation, (tuple, list)) else (dilation, dilation)
if layout == 'NCHW':
_create_tuning_space(cfg, data, kernel, strides, padding, layout)
_create_tuning_space(cfg, data, kernel, strides, padding, dilation, layout)
if cfg.is_fallback:
wkl = _get_workload(data, kernel, strides, padding, out_dtype)
_get_default_config(cfg, wkl)
return _declaration_conv_impl(cfg, data, kernel, strides, padding, layout, out_dtype)
return _declaration_conv_impl(cfg, data, kernel, strides, padding, dilation, layout,
out_dtype)
elif layout == 'HWCN':
return nn.conv2d_hwcn(data, kernel, strides, padding, out_dtype)
return nn.conv2d_hwcn(data, kernel, strides, padding, dilation, out_dtype)
elif layout == 'NHWC':
return nn.conv2d_nhwc(data, kernel, strides, padding, out_dtype)
return nn.conv2d_nhwc(data, kernel, strides, padding, dilation, out_dtype)
else:
raise ValueError("not support this layout {} yet".format(layout))
def _declaration_conv_impl(cfg, data, kernel, strides, padding, layout, out_dtype):
def _declaration_conv_impl(cfg, data, kernel, strides, padding, dilation, layout, out_dtype):
out_dtype = data.dtype if out_dtype is None else out_dtype
assert layout == 'NCHW', "only support NCHW convolution for AVX"
assert isinstance(dilation, int) or len(dilation) == 2
if isinstance(dilation, int):
dilation_h, dilation_w = dilation
else:
dilation_h, dilation_w = dilation
if dilation_h != 1 or dilation_w != 1:
kernel = dilate(kernel, (1, 1, dilation_h, dilation_w))
HPAD, WPAD = padding
HSTR, WSTR = strides
......@@ -251,13 +263,13 @@ def schedule_conv2d_nhwc(outs):
@autotvm.task.register("topi_x86_conv2d_NCHWc")
def _topi_nn_conv2d_NCHWc(*args, **kwargs):
assert not kwargs, "Do not support kwargs in template function call"
data, kernel, strides, padding, origin_layout, dtype = deserialize_args(args)
data, kernel, strides, padding, dilation, origin_layout, dtype = deserialize_args(args)
raw_data_shape = get_const_tuple(data.shape)
raw_kernel_shape = get_const_tuple(kernel.shape)
# get config here
cfg = get_config()
_create_tuning_space(cfg, data, kernel, strides, padding, origin_layout)
_create_tuning_space(cfg, data, kernel, strides, padding, dilation, origin_layout)
# change shape with the value in config
ic_bn, oc_bn, ow_bn = (cfg["tile_ic"].size[-1], cfg["tile_oc"].size[-1],
......@@ -271,7 +283,7 @@ def _topi_nn_conv2d_NCHWc(*args, **kwargs):
new_data = tvm.placeholder(new_data_shape, data.dtype)
new_kernel = tvm.placeholder(new_kernel_shape, kernel.dtype)
C = _declaration_conv_NCHWc(cfg, new_data, new_kernel, strides, padding,
C = _declaration_conv_NCHWc(cfg, new_data, new_kernel, strides, padding, dilation,
data_layout, out_layout, dtype)
s = _schedule_conv2d_NCHWc(cfg, [C])
return s, [new_data, new_kernel, C]
......@@ -326,11 +338,13 @@ def _alter_conv2d_layout(attrs, inputs, tinfo):
@autotvm.register_topi_compute(conv2d_NCHWc, 'cpu', 'direct')
def _declaration_conv_NCHWc(cfg, data, kernel, strides,
padding, layout, out_layout, out_dtype):
padding, dilation, layout, out_layout, out_dtype):
# layout and out_layout are not used here,
# we keep them for debug convenience when dumping autotvm workload
HPAD, WPAD = padding if isinstance(padding, (tuple, list)) else (padding, padding)
HSTR, WSTR = strides if isinstance(strides, (tuple, list)) else (strides, strides)
dh, dw = dilation if isinstance(dilation, (tuple, list)) else (dilation, dilation)
assert (dh, dw) == (1, 1), "Does not support dilation"
n, ic_chunk, ih, iw, ic_bn = get_const_tuple(data.shape)
in_channel = ic_chunk * ic_bn
......
......@@ -13,8 +13,7 @@ def verify_conv2d_hwcn(batch, in_channel, in_size, num_filter, kernel, stride, p
A = tvm.placeholder((in_height, in_width, in_channel, batch), name='A')
W = tvm.placeholder((kernel, kernel, in_channel, num_filter), name='W')
dW = topi.nn.dilate(W, (dilation, dilation, 1, 1))
B = topi.nn.conv2d_hwcn(A, dW, stride, padding)
B = topi.nn.conv2d_hwcn(A, W, stride, padding, dilation)
C = topi.nn.relu(B)
s1 = topi.cuda.schedule_conv2d_hwcn([B])
s2 = topi.cuda.schedule_conv2d_hwcn([C])
......
......@@ -15,7 +15,7 @@ oc_block_factor = 4
def verify_conv2d_NCHWc_int8(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False):
print("Workload: (%d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding))
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation))
in_height = in_width = in_size
......@@ -63,8 +63,7 @@ def verify_conv2d_NCHWc_int8(batch, in_channel, in_size, num_filter, kernel, str
print("Running on target: %s" % device)
with tvm.target.create(device):
dW = topi.nn.dilate(W, (1, 1, dilation, dilation))
C = topi.nn.conv2d(A, dW, (stride, stride), (padding, padding),
C = topi.nn.conv2d(A, W, (stride, stride), (padding, padding), (dilation, dilation),
layout='NCHW', out_dtype=dtype)
if add_bias:
C = topi.add(C, bias)
......
......@@ -11,7 +11,7 @@ from topi.util import get_const_tuple
from common import get_all_backend
def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False):
print("Workload: (%d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding))
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation))
in_height = in_width = in_size
......@@ -47,9 +47,8 @@ def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, p
return
print("Running on target: %s" % device)
with tvm.target.create(device):
dW = topi.nn.dilate(W, (1, 1, dilation, dilation))
C = topi.nn.conv2d(A, dW, (stride, stride), (padding, padding),
layout='NCHW', out_dtype=dtype)
C = topi.nn.conv2d(A, W, (stride, stride), (padding, padding),
(dilation, dilation), layout='NCHW', out_dtype=dtype)
if add_bias:
C = topi.add(C, bias)
if add_relu:
......
......@@ -13,18 +13,17 @@ def verify_conv2d_nhwc(batch, in_channel, in_size, num_filter, kernel, stride, p
A = tvm.placeholder((batch, in_height, in_width, in_channel), name='A')
W = tvm.placeholder((kernel, kernel, in_channel, num_filter), name='W')
dW = topi.nn.dilate(W, (1, dilation, dilation, 1))
B = topi.nn.conv2d_nhwc(A, dW, stride, padding)
B = topi.nn.conv2d_nhwc(A, W, stride, padding, dilation)
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
dtype = A.dtype
@memoize("topi.tests.test_topi_conv2d_nhwc.verify_nhwc")
@memoize("topi.tests.test_topi_conv2d_nhwc.verify_nhwc.v2")
def get_ref_data():
a_np = np.random.uniform(size=a_shape).astype(dtype)
w_np = np.random.uniform(size=w_shape).astype(dtype)
dw_np = topi.testing.dilate_python(w_np, (1, dilation, dilation, 1))
dw_np = topi.testing.dilate_python(w_np, (dilation, dilation, 1, 1))
b_np = topi.testing.conv2d_nhwc_python(a_np, dw_np, stride, padding)
return a_np, w_np, b_np
a_np, w_np, b_np = get_ref_data()
......
......@@ -11,7 +11,7 @@ from topi.util import get_const_tuple
def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False):
print("Workload: (%d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding))
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation))
in_height = in_width = in_size
......@@ -47,8 +47,7 @@ def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, p
return
print("Running on target: %s" % device)
with tvm.target.create(device):
dW = topi.nn.dilate(W, (1, 1, dilation, dilation))
C = topi.nn.conv2d(A, dW, stride, padding, layout='NCHW', out_dtype=dtype)
C = topi.nn.conv2d(A, W, stride, padding, dilation, layout='NCHW', out_dtype=dtype)
if add_bias:
C = topi.add(C, bias)
if add_relu:
......
......@@ -26,7 +26,6 @@ def depthwise_conv2d_with_workload_nchw(batch, in_channel, in_height, channel_mu
# placeholder
Input = tvm.placeholder((batch, in_channel, in_height, in_width), name='Input')
Filter = tvm.placeholder((filter_channel, channel_multiplier, filter_height, filter_width), name='Filter')
DilatedFilter = topi.nn.dilate(Filter, (1, 1, dilation, dilation), name='DilatedFilter')
Scale = tvm.placeholder((in_channel * channel_multiplier,), name='Scale')
Shift = tvm.placeholder((in_channel * channel_multiplier,), name='Shift')
......@@ -40,8 +39,8 @@ def depthwise_conv2d_with_workload_nchw(batch, in_channel, in_height, channel_mu
print("Running on target: %s" % device)
with tvm.target.create(device):
# declare
DepthwiseConv2d = topi.nn.depthwise_conv2d_nchw(Input, DilatedFilter,
(stride_h, stride_w), padding_args, dtype)
DepthwiseConv2d = topi.nn.depthwise_conv2d_nchw(Input, Filter,
(stride_h, stride_w), padding_args, dilation, dtype)
ScaleShift = topi.nn.scale_shift_nchw(DepthwiseConv2d, Scale, Shift)
Relu = topi.nn.relu(ScaleShift)
# schedule
......@@ -123,7 +122,6 @@ def depthwise_conv2d_with_workload_nhwc(batch, in_channel, in_height, channel_mu
# placeholder
Input = tvm.placeholder((batch, in_height, in_width, in_channel), name='Input')
Filter = tvm.placeholder((filter_height, filter_width,filter_channel, channel_multiplier), name='Filter')
DilatedFilter = topi.nn.dilate(Filter, (1, 1, dilation, dilation), name='DilatedFilter')
Scale = tvm.placeholder((in_channel * channel_multiplier,), name='Scale')
Shift = tvm.placeholder((in_channel * channel_multiplier,), name='Shift')
......@@ -138,8 +136,8 @@ def depthwise_conv2d_with_workload_nhwc(batch, in_channel, in_height, channel_mu
with tvm.target.create(device):
# declare
DepthwiseConv2d = topi.nn.depthwise_conv2d_nhwc(Input, DilatedFilter,
(stride_h, stride_w), padding_args, dtype)
DepthwiseConv2d = topi.nn.depthwise_conv2d_nhwc(Input, Filter,
(stride_h, stride_w), padding_args, dilation, dtype)
ScaleShift = topi.nn.scale_shift_nhwc(DepthwiseConv2d, Scale, Shift)
Relu = topi.nn.relu(ScaleShift)
# schedule
......@@ -159,11 +157,11 @@ def depthwise_conv2d_with_workload_nhwc(batch, in_channel, in_height, channel_mu
scale_shift_shape = get_const_tuple(ScaleShift.shape)
# Use memoize, pickle the test data for next time use.
@memoize("topi.tests.test_topi_depthwise_conv2d.nhwc")
@memoize("topi.tests.test_topi_depthwise_conv2d.nhwc.v2")
def get_ref_data():
input_np = np.random.uniform(size=input_shape).astype(dtype)
filter_np = np.random.uniform(size=filter_shape).astype(dtype)
dilated_filter_np = topi.testing.dilate_python(filter_np, (1, 1, dilation, dilation))
dilated_filter_np = topi.testing.dilate_python(filter_np, (dilation, dilation, 1, 1))
scale_np = np.random.uniform(size=scale_shape).astype(dtype)
shift_np = np.random.uniform(size=shift_shape).astype(dtype)
# correctness with scipy
......@@ -232,7 +230,8 @@ def test_depthwise_conv2d():
depthwise_conv2d_with_workload_nhwc(1, 728, 32, 1, 3, 1, "VALID")
depthwise_conv2d_with_workload_nhwc(4, 256, 64, 2, 5, 2, "VALID")
# dilation = 2
depthwise_conv2d_with_workload_nhwc(1, 728, 64, 1, 3, 1, "SAME", dilation=2)
# disabled because it uses too large shared memory on cuda
# depthwise_conv2d_with_workload_nhwc(1, 728, 64, 1, 3, 1, "SAME", dilation=2)
if __name__ == "__main__":
test_depthwise_conv2d()
......@@ -68,7 +68,7 @@ def conv2d_no_batching(N, H, W, CO, CI, KH, KW, stride, padding):
data = tvm.placeholder((N, CI, H, W), name='data')
kernel = tvm.placeholder((CO, CI, KH, KW), name='kernel')
conv = topi.nn.conv2d_nchw(data, kernel, stride, padding, 'float32')
conv = topi.nn.conv2d_nchw(data, kernel, stride, padding, dilation=1, out_dtype='float32')
s = tvm.create_schedule([conv.op])
##### space definition begin #####
......
......@@ -117,7 +117,7 @@ data = tvm.placeholder((1, 3, 224, 224))
kernel = tvm.placeholder((10, 3, 5, 5))
with tvm.target.create("cuda"):
conv = topi.nn.conv2d(data, kernel, strides=1, padding=2)
conv = topi.nn.conv2d(data, kernel, strides=1, padding=2, dilation=1)
out = topi.nn.relu(conv)
sconv = topi.generic.nn.schedule_conv2d_nchw(out)
print(tvm.lower(sconv, [data, kernel], simple_mode=True))
......
......@@ -33,6 +33,7 @@ def test_cpu_conv2d():
res_conv = topi.nn.conv2d(
data, kernel, padding=(wl.hpad, wl.wpad),
strides=(wl.hstride, wl.wstride),
dilation=(1, 1),
out_dtype="int32")
res = topi.right_shift(res_conv, 8)
res = my_clip(res, 0, 127)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment