Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
1c56c722
Unverified
Commit
1c56c722
authored
Oct 09, 2019
by
Yizhi Liu
Committed by
GitHub
Oct 09, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[topi] enable fp16 sort for arm (#4084)
parent
ec375a85
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
62 additions
and
22 deletions
+62
-22
src/contrib/sort/sort.cc
+27
-1
topi/python/topi/vision/nms.py
+35
-21
No files found.
src/contrib/sort/sort.cc
View file @
1c56c722
...
...
@@ -74,9 +74,11 @@ TVM_REGISTER_GLOBAL("tvm.contrib.sort.argsort_nms")
// Currently only supports input dtype to be float32.
CHECK_EQ
(
dtype
.
code
,
2
)
<<
"Currently only supports input dtype "
"to be float32."
;
"to be float."
;
#if (__ARM_FP16_FORMAT_IEEE != 1)
CHECK_EQ
(
dtype
.
bits
,
32
)
<<
"Currently only supports input dtype "
"to be float32."
;
#endif
CHECK_LT
(
axis
,
input
->
ndim
)
<<
"Axis out of boundary for "
"input ndim "
<<
input
->
ndim
;
...
...
@@ -98,9 +100,25 @@ TVM_REGISTER_GLOBAL("tvm.contrib.sort.argsort_nms")
sorter
.
emplace_back
(
std
::
make_pair
(
k
,
*
(
data_ptr
+
full_idx
)));
}
if
(
is_ascend
)
{
#if (__ARM_FP16_FORMAT_IEEE == 1)
if
(
dtype
.
bits
==
16
)
{
std
::
stable_sort
(
sorter
.
begin
(),
sorter
.
end
(),
CompareAscend
<
__fp16
>
);
}
else
{
#endif
std
::
stable_sort
(
sorter
.
begin
(),
sorter
.
end
(),
CompareAscend
<
float
>
);
#if (__ARM_FP16_FORMAT_IEEE == 1)
}
#endif
}
else
{
#if (__ARM_FP16_FORMAT_IEEE == 1)
if
(
dtype
.
bits
==
16
)
{
std
::
stable_sort
(
sorter
.
begin
(),
sorter
.
end
(),
CompareDescend
<
__fp16
>
);
}
else
{
#endif
std
::
stable_sort
(
sorter
.
begin
(),
sorter
.
end
(),
CompareDescend
<
float
>
);
#if (__ARM_FP16_FORMAT_IEEE == 1)
}
#endif
}
for
(
int32_t
k
=
0
;
k
<
input
->
shape
[
axis
];
++
k
)
{
*
(
static_cast
<
int32_t
*>
(
output
->
data
)
+
base_idx
+
k
*
axis_mul_after
)
...
...
@@ -192,6 +210,14 @@ TVM_REGISTER_GLOBAL("tvm.contrib.sort.argsort")
}
else
{
LOG
(
FATAL
)
<<
"Unsupported output dtype: "
<<
out_dtype
;
}
#if (__ARM_FP16_FORMAT_IEEE == 1)
}
else
if
(
data_dtype
==
"float16"
)
{
if
(
out_dtype
==
"float16"
)
{
argsort
<
__fp16
,
__fp16
>
(
input
,
output
,
axis
,
is_ascend
);
}
else
{
LOG
(
FATAL
)
<<
"Unsupported output dtype: "
<<
out_dtype
;
}
#endif
}
else
if
(
data_dtype
==
"int32"
)
{
if
(
out_dtype
==
"int32"
)
{
argsort
<
int32_t
,
int32_t
>
(
input
,
output
,
axis
,
is_ascend
);
...
...
topi/python/topi/vision/nms.py
View file @
1c56c722
...
...
@@ -22,7 +22,7 @@ from tvm import hybrid
from
..sort
import
argsort
@hybrid.script
def
hybrid_rearrange_out
(
data
):
def
hybrid_rearrange_out
(
data
,
one
):
"""Hybrid routine to rearrange nms output to
move all valid entries to top.
...
...
@@ -32,6 +32,9 @@ def hybrid_rearrange_out(data):
NMS output. 3-D tensor with shape
[batch_size, num_anchors, 6].
one: tvm.const
Constant one with the same dtype as data.
Returns
-------
output : tvm.Tensor or numpy NDArray
...
...
@@ -55,12 +58,12 @@ def hybrid_rearrange_out(data):
valid_idx
+=
1
if
j
>=
valid_idx
:
for
k
in
range
(
elem_length
):
output
[
i
,
j
,
k
]
=
-
1.0
output
[
i
,
j
,
k
]
=
-
one
return
output
@hybrid.script
def
hybrid_get_valid_counts
(
data
,
score_threshold
,
id_index
,
score_index
):
def
hybrid_get_valid_counts
(
data
,
score_threshold
,
id_index
,
score_index
,
one
):
"""Hybrid routine to get valid count of bounding boxes
given a score threshold. Also moves valid boxes to the
top of input data.
...
...
@@ -80,6 +83,9 @@ def hybrid_get_valid_counts(data, score_threshold, id_index, score_index):
score_index: tvm.const
Index of the scores/confidence of boxes.
one: tvm.const
Constant one with the same dtype as data.
Returns
-------
out_tensor : tvm.Tensor or numpy NDArray
...
...
@@ -107,7 +113,7 @@ def hybrid_get_valid_counts(data, score_threshold, id_index, score_index):
valid_count
[
i
]
+=
1
if
j
>=
valid_count
[
i
]:
for
k
in
range
(
box_data_length
):
out_tensor
[
i
,
j
,
k
]
=
-
1.0
out_tensor
[
i
,
j
,
k
]
=
-
one
return
valid_count
,
out_tensor
@tvm.target.generic_func
...
...
@@ -138,17 +144,18 @@ def get_valid_counts(data, score_threshold=0, id_index=0, score_index=1):
valid_count : tvm.Tensor
1-D tensor for valid number of boxes.
"""
score_threshold_const
=
tvm
.
const
(
score_threshold
,
"float32"
)
score_threshold_const
=
tvm
.
const
(
score_threshold
,
data
.
dtype
)
id_index_const
=
tvm
.
const
(
id_index
,
"int32"
)
score_index_const
=
tvm
.
const
(
score_index
,
"int32"
)
return
hybrid_get_valid_counts
(
data
,
score_threshold_const
,
id_index_const
,
score_index_const
)
id_index_const
,
score_index_const
,
tvm
.
const
(
1
,
data
.
dtype
))
@hybrid.script
def
hybrid_nms
(
data
,
sorted_index
,
valid_count
,
max_output_size
,
iou_threshold
,
force_suppress
,
top_k
,
coord_start
,
id_index
,
score_index
):
top_k
,
coord_start
,
id_index
,
score_index
,
zero
,
one
):
"""Hybrid routing for non-maximum suppression.
Parameters
...
...
@@ -186,6 +193,12 @@ def hybrid_nms(data, sorted_index, valid_count,
score_index: tvm.const
Index of the scores/confidence of boxes.
zero: tvm.const
Constant zero with the same dtype as data.
one: tvm.const
Constant one with the same dtype as data.
Returns
-------
output : tvm.Tensor
...
...
@@ -200,8 +213,7 @@ def hybrid_nms(data, sorted_index, valid_count,
box_indices
=
output_tensor
((
batch_size
,
num_anchors
),
"int32"
)
output
=
output_tensor
((
batch_size
,
num_anchors
,
box_data_length
,),
data
.
dtype
)
box_data_length
,),
data
.
dtype
)
for
i
in
range
(
batch_size
):
if
iou_threshold
>
0
:
...
...
@@ -217,7 +229,7 @@ def hybrid_nms(data, sorted_index, valid_count,
if
0
<
top_k
<
valid_count
[
i
]:
for
j
in
parallel
(
valid_count
[
i
]
-
nkeep
):
for
k
in
range
(
box_data_length
):
output
[
i
,
j
+
nkeep
,
k
]
=
-
1.0
output
[
i
,
j
+
nkeep
,
k
]
=
-
one
box_indices
[
i
,
j
+
nkeep
]
=
-
1
# Apply nms
box_start_idx
=
coord_start
...
...
@@ -243,15 +255,15 @@ def hybrid_nms(data, sorted_index, valid_count,
b_b
=
output
[
batch_idx
,
box_b_idx
,
box_start_idx
+
3
]
b_l
=
output
[
batch_idx
,
box_b_idx
,
box_start_idx
]
b_r
=
output
[
batch_idx
,
box_b_idx
,
box_start_idx
+
2
]
w
=
max
(
0.0
,
min
(
a_r
,
b_r
)
-
max
(
a_l
,
b_l
))
h
=
max
(
0.0
,
min
(
a_b
,
b_b
)
-
max
(
a_t
,
b_t
))
w
=
max
(
zero
,
min
(
a_r
,
b_r
)
-
max
(
a_l
,
b_l
))
h
=
max
(
zero
,
min
(
a_b
,
b_b
)
-
max
(
a_t
,
b_t
))
area
=
h
*
w
u
=
(
a_r
-
a_l
)
*
(
a_b
-
a_t
)
+
(
b_r
-
b_l
)
*
(
b_b
-
b_t
)
-
area
iou
=
0.0
if
u
<=
0.0
else
area
/
u
iou
=
zero
if
u
<=
zero
else
area
/
u
if
iou
>=
iou_threshold
:
output
[
i
,
k
,
score_index
]
=
-
1.0
output
[
i
,
k
,
score_index
]
=
-
one
if
id_index
>=
0
:
output
[
i
,
k
,
id_index
]
=
-
1.0
output
[
i
,
k
,
id_index
]
=
-
one
box_indices
[
i
,
k
]
=
-
1
else
:
for
j
in
parallel
(
valid_count
[
i
]):
...
...
@@ -261,16 +273,16 @@ def hybrid_nms(data, sorted_index, valid_count,
# Set invalid entry to be -1
for
j
in
parallel
(
num_anchors
-
valid_count
[
i
]):
for
k
in
range
(
box_data_length
):
output
[
i
,
j
+
valid_count
[
i
],
k
]
=
-
1.0
output
[
i
,
j
+
valid_count
[
i
],
k
]
=
-
one
box_indices
[
i
,
j
+
valid_count
[
i
]]
=
-
1
# Only return max_output_size valid boxes
num_valid_boxes
=
0
if
max_output_size
>
0
:
for
j
in
parallel
(
valid_count
[
i
]):
if
output
[
i
,
j
,
0
]
>=
0
:
if
output
[
i
,
j
,
0
]
>=
zero
:
if
num_valid_boxes
==
max_output_size
:
for
k
in
range
(
box_data_length
):
output
[
i
,
j
,
k
]
=
-
1.0
output
[
i
,
j
,
k
]
=
-
one
box_indices
[
i
,
j
]
=
-
1
else
:
num_valid_boxes
+=
1
...
...
@@ -356,13 +368,15 @@ def non_max_suppression(data, valid_count, max_output_size=-1,
sort_tensor
=
argsort
(
score_tensor
,
valid_count
=
valid_count
,
axis
=
1
,
is_ascend
=
False
)
out
,
box_indices
=
hybrid_nms
(
data
,
sort_tensor
,
valid_count
,
tvm
.
const
(
max_output_size
,
dtype
=
"int32"
),
tvm
.
const
(
iou_threshold
,
dtype
=
"float32"
),
tvm
.
const
(
iou_threshold
,
dtype
=
data
.
dtype
),
tvm
.
const
(
force_suppress
,
dtype
=
"bool"
),
tvm
.
const
(
top_k
,
dtype
=
"int32"
),
tvm
.
const
(
coord_start
,
dtype
=
"int32"
),
tvm
.
const
(
id_index
,
dtype
=
"int32"
),
tvm
.
const
(
score_index
,
dtype
=
"int32"
))
tvm
.
const
(
score_index
,
dtype
=
"int32"
),
zero
=
tvm
.
const
(
0
,
dtype
=
data
.
dtype
),
one
=
tvm
.
const
(
1
,
dtype
=
data
.
dtype
))
if
not
return_indices
and
invalid_to_bottom
:
out
=
hybrid_rearrange_out
(
out
)
out
=
hybrid_rearrange_out
(
out
,
one
=
tvm
.
const
(
1
,
dtype
=
data
.
dtype
)
)
return
box_indices
if
return_indices
else
out
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment