Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
13388655
Commit
13388655
authored
Sep 12, 2017
by
Tianqi Chen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOP] Level 3 complete (#7)
parent
31eb2c5a
Hide whitespace changes
Inline
Side-by-side
Showing
14 changed files
with
504 additions
and
97 deletions
+504
-97
nnvm/CMakeLists.txt
+4
-1
nnvm/Makefile
+3
-3
nnvm/include/nnvm/top/nn.h
+11
-9
nnvm/include/nnvm/top/tensor.h
+18
-0
nnvm/python/nnvm/libinfo.py
+1
-1
nnvm/src/top/nn/nn.cc
+40
-5
nnvm/src/top/tensor/elemwise.cc
+156
-0
nnvm/src/top/tensor/transform.cc
+158
-70
nnvm/tests/python/unittest/test_graph.py
+0
-0
nnvm/tests/python/unittest/test_infer_shape.py
+82
-0
nnvm/tests/python/unittest/test_symbol.py
+0
-0
nnvm/tests/python/unittest/test_top_level1.py
+0
-0
nnvm/tests/python/unittest/test_top_level3.py
+23
-0
nnvm/tests/travis/run_test.sh
+8
-8
No files found.
nnvm/CMakeLists.txt
View file @
13388655
...
@@ -53,7 +53,10 @@ mxnet_source_group("Source\\core" GLOB "src/core/*.cc")
...
@@ -53,7 +53,10 @@ mxnet_source_group("Source\\core" GLOB "src/core/*.cc")
mxnet_source_group
(
"Source
\\
pass"
GLOB
"src/pass/*.cc"
)
mxnet_source_group
(
"Source
\\
pass"
GLOB
"src/pass/*.cc"
)
FILE
(
GLOB_RECURSE SOURCE
"src/*.cc"
"src/*.h"
"include/*.h"
)
FILE
(
GLOB_RECURSE SOURCE
src/c_api/*.cc
src/core/*.cc
src/pass/*.cc
)
if
(
EXISTS
${
CMAKE_CURRENT_SOURCE_DIR
}
/dmlc-core/CMakeLists.txt
)
if
(
EXISTS
${
CMAKE_CURRENT_SOURCE_DIR
}
/dmlc-core/CMakeLists.txt
)
include_directories
(
${
CMAKE_CURRENT_SOURCE_DIR
}
/dmlc-core/include
)
include_directories
(
${
CMAKE_CURRENT_SOURCE_DIR
}
/dmlc-core/include
)
...
...
nnvm/Makefile
View file @
13388655
...
@@ -51,10 +51,10 @@ else
...
@@ -51,10 +51,10 @@ else
NO_WHOLE_ARCH
=
--no-whole-archive
NO_WHOLE_ARCH
=
--no-whole-archive
endif
endif
all
:
lib/libnnvm.a lib/libnnvm_
example
.$(SHARED_LIBRARY_SUFFIX)
all
:
lib/libnnvm.a lib/libnnvm_
top
.$(SHARED_LIBRARY_SUFFIX)
SRC
=
$
(
wildcard src/
*
.cc src/c_api/
*
.cc src/core/
*
.cc src/pass/
*
.cc
)
SRC
=
$
(
wildcard src/
*
.cc src/c_api/
*
.cc src/core/
*
.cc src/pass/
*
.cc
)
SRC_TOP
=
$
(
wildcard src/top/
*
.cc
)
SRC_TOP
=
$
(
wildcard src/top/
*
.cc
, src/top/
*
/
*
.cc
)
ALL_OBJ
=
$
(
patsubst %.cc, build/%.o,
$(SRC)
)
ALL_OBJ
=
$
(
patsubst %.cc, build/%.o,
$(SRC)
)
TOP_OBJ
=
$
(
patsubst %.cc, build/%.o,
$(SRC_TOP)
)
TOP_OBJ
=
$
(
patsubst %.cc, build/%.o,
$(SRC_TOP)
)
ALL_DEP
=
$(ALL_OBJ)
ALL_DEP
=
$(ALL_OBJ)
...
@@ -72,7 +72,7 @@ lib/libnnvm.a: $(ALL_DEP)
...
@@ -72,7 +72,7 @@ lib/libnnvm.a: $(ALL_DEP)
@
mkdir
-p
$
(
@D
)
@
mkdir
-p
$
(
@D
)
ar crv
$@
$
(
filter %.o,
$?
)
ar crv
$@
$
(
filter %.o,
$?
)
lib/libnnvm_
example
.$(SHARED_LIBRARY_SUFFIX)
:
lib/libnnvm.a ${TOP_OBJ}
lib/libnnvm_
top
.$(SHARED_LIBRARY_SUFFIX)
:
lib/libnnvm.a ${TOP_OBJ}
@
mkdir
-p
$
(
@D
)
@
mkdir
-p
$
(
@D
)
$(CXX)
$(CFLAGS)
-shared
-o
$@
$
(
filter %.o,
$^
)
$(LDFLAGS)
-Wl
,
${
WHOLE_ARCH
}
lib/libnnvm.a
-Wl
,
${
NO_WHOLE_ARCH
}
$(CXX)
$(CFLAGS)
-shared
-o
$@
$
(
filter %.o,
$^
)
$(LDFLAGS)
-Wl
,
${
WHOLE_ARCH
}
lib/libnnvm.a
-Wl
,
${
NO_WHOLE_ARCH
}
...
...
nnvm/include/nnvm/top/nn.h
View file @
13388655
...
@@ -54,15 +54,15 @@ struct DropoutParam : public dmlc::Parameter<DropoutParam> {
...
@@ -54,15 +54,15 @@ struct DropoutParam : public dmlc::Parameter<DropoutParam> {
struct
BatchNormParam
:
public
dmlc
::
Parameter
<
BatchNormParam
>
{
struct
BatchNormParam
:
public
dmlc
::
Parameter
<
BatchNormParam
>
{
int
axis
;
int
axis
;
float
epsilon
;
double
epsilon
;
float
momentum
;
double
momentum
;
bool
center
;
bool
center
;
bool
scale
;
bool
scale
;
DMLC_DECLARE_PARAMETER
(
BatchNormParam
)
{
DMLC_DECLARE_PARAMETER
(
BatchNormParam
)
{
DMLC_DECLARE_FIELD
(
axis
).
set_default
(
1
)
DMLC_DECLARE_FIELD
(
axis
).
set_default
(
1
)
.
describe
(
"Specify which shape axis the channel is specified."
);
.
describe
(
"Specify which shape axis the channel is specified."
);
DMLC_DECLARE_FIELD
(
epsilon
).
set_default
(
1e-5
f
)
DMLC_DECLARE_FIELD
(
epsilon
).
set_default
(
1e-5
)
.
describe
(
"Small float added to variance to avoid dividing by zero."
);
.
describe
(
"Small float added to variance to avoid dividing by zero."
);
DMLC_DECLARE_FIELD
(
center
).
set_default
(
true
)
DMLC_DECLARE_FIELD
(
center
).
set_default
(
true
)
.
describe
(
"If True, add offset of `beta` to normalized tensor."
.
describe
(
"If True, add offset of `beta` to normalized tensor."
...
@@ -81,21 +81,23 @@ struct BatchNormParam : public dmlc::Parameter<BatchNormParam> {
...
@@ -81,21 +81,23 @@ struct BatchNormParam : public dmlc::Parameter<BatchNormParam> {
static
const
constexpr
int
kMovingVariance
=
4
;
static
const
constexpr
int
kMovingVariance
=
4
;
};
};
// Shared by softmax and log_softmax
struct
SoftmaxParam
:
public
dmlc
::
Parameter
<
SoftmaxParam
>
{
struct
SoftmaxParam
:
public
dmlc
::
Parameter
<
SoftmaxParam
>
{
int
axis
;
int
axis
;
DMLC_DECLARE_PARAMETER
(
SoftmaxParam
)
{
DMLC_DECLARE_PARAMETER
(
SoftmaxParam
)
{
DMLC_DECLARE_FIELD
(
axis
).
set_default
(
-
1
)
DMLC_DECLARE_FIELD
(
axis
).
set_default
(
-
1
)
.
describe
(
"The axis to sum over when computing softmax."
);
.
describe
(
"The axis to sum over when computing softmax."
);
}
}
};
};
struct
L
ogSoftmaxParam
:
public
dmlc
::
Parameter
<
LogSoftmax
Param
>
{
struct
L
eakyReLUParam
:
public
dmlc
::
Parameter
<
LeakyReLU
Param
>
{
int
axis
;
double
alpha
;
DMLC_DECLARE_PARAMETER
(
L
ogSoftmax
Param
)
{
DMLC_DECLARE_PARAMETER
(
L
eakyReLU
Param
)
{
DMLC_DECLARE_FIELD
(
a
xis
).
set_default
(
-
1
)
DMLC_DECLARE_FIELD
(
a
lpha
).
set_lower_bound
(
0
.
0
).
set_default
(
0
.
25
)
.
describe
(
"The axis to sum over when computing softmax
."
);
.
describe
(
"slope coefficient for the negative half axis
."
);
}
}
};
};
...
...
nnvm/include/nnvm/top/tensor.h
View file @
13388655
...
@@ -40,6 +40,24 @@ struct CastParam : public dmlc::Parameter<CastParam> {
...
@@ -40,6 +40,24 @@ struct CastParam : public dmlc::Parameter<CastParam> {
}
}
};
};
struct
ReshapeParam
:
public
dmlc
::
Parameter
<
ReshapeParam
>
{
Tuple
<
int64_t
>
shape
;
DMLC_DECLARE_PARAMETER
(
ReshapeParam
)
{
DMLC_DECLARE_FIELD
(
shape
);
}
};
struct
ScalarParam
:
public
dmlc
::
Parameter
<
ScalarParam
>
{
double
scalar
;
DMLC_DECLARE_PARAMETER
(
ScalarParam
)
{
DMLC_DECLARE_FIELD
(
scalar
);
}
};
}
// namespace top
}
// namespace top
}
// namespace nnvm
}
// namespace nnvm
...
...
nnvm/python/nnvm/libinfo.py
View file @
13388655
...
@@ -26,7 +26,7 @@ def find_lib_path():
...
@@ -26,7 +26,7 @@ def find_lib_path():
if
hasattr
(
__builtin__
,
"NNVM_LIBRARY_NAME"
):
if
hasattr
(
__builtin__
,
"NNVM_LIBRARY_NAME"
):
lib_name
=
__builtin__
.
NNVM_LIBRARY_NAME
lib_name
=
__builtin__
.
NNVM_LIBRARY_NAME
else
:
else
:
lib_name
=
"libnnvm_
example
"
lib_name
=
"libnnvm_
top
"
api_path
=
os
.
path
.
join
(
base_path
,
'../../lib/'
)
api_path
=
os
.
path
.
join
(
base_path
,
'../../lib/'
)
cmake_build_path
=
os
.
path
.
join
(
base_path
,
'../../build/Release/'
)
cmake_build_path
=
os
.
path
.
join
(
base_path
,
'../../build/Release/'
)
...
...
nnvm/src/top/nn.cc
→
nnvm/src/top/nn
/nn
.cc
View file @
13388655
...
@@ -7,8 +7,8 @@
...
@@ -7,8 +7,8 @@
#include <nnvm/node.h>
#include <nnvm/node.h>
#include <nnvm/op_attr_types.h>
#include <nnvm/op_attr_types.h>
#include <nnvm/top/nn.h>
#include <nnvm/top/nn.h>
#include "./op_common.h"
#include ".
.
/op_common.h"
#include "./elemwise_op_common.h"
#include ".
.
/elemwise_op_common.h"
namespace
nnvm
{
namespace
nnvm
{
namespace
top
{
namespace
top
{
...
@@ -126,6 +126,25 @@ NNVM_REGISTER_OP(dropout)
...
@@ -126,6 +126,25 @@ NNVM_REGISTER_OP(dropout)
// batchnorm
// batchnorm
DMLC_REGISTER_PARAMETER
(
BatchNormParam
);
DMLC_REGISTER_PARAMETER
(
BatchNormParam
);
inline
bool
BatchNormInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
out_shape
)
{
CHECK_EQ
(
in_shape
->
size
(),
5U
)
<<
"Input:[data, gamma, beta, moving_mean, moving_var]"
;
CHECK_EQ
(
out_shape
->
size
(),
3U
);
const
TShape
&
dshape
=
in_shape
->
at
(
0
);
if
(
dshape
.
ndim
()
==
0
)
return
false
;
TShape
bshape
({
dshape
[
1
]});
NNVM_ASSIGN_INPUT_SHAPE
(
attrs
,
*
in_shape
,
1
,
bshape
);
NNVM_ASSIGN_INPUT_SHAPE
(
attrs
,
*
in_shape
,
2
,
bshape
);
NNVM_ASSIGN_INPUT_SHAPE
(
attrs
,
*
in_shape
,
3
,
bshape
);
NNVM_ASSIGN_INPUT_SHAPE
(
attrs
,
*
in_shape
,
4
,
bshape
);
NNVM_ASSIGN_OUTPUT_SHAPE
(
attrs
,
*
out_shape
,
0
,
dshape
);
NNVM_ASSIGN_OUTPUT_SHAPE
(
attrs
,
*
out_shape
,
1
,
bshape
);
NNVM_ASSIGN_OUTPUT_SHAPE
(
attrs
,
*
out_shape
,
2
,
bshape
);
return
true
;
}
NNVM_REGISTER_OP
(
batch_norm
)
NNVM_REGISTER_OP
(
batch_norm
)
.
describe
(
R"(Batch normalization layer (Ioffe and Szegedy, 2014).
.
describe
(
R"(Batch normalization layer (Ioffe and Szegedy, 2014).
Normalizes the input at each batch, i.e. applies a transformation
Normalizes the input at each batch, i.e. applies a transformation
...
@@ -167,6 +186,8 @@ axis to be the last item in the input shape.
...
@@ -167,6 +186,8 @@ axis to be the last item in the input shape.
.
set_num_inputs
(
5
)
.
set_num_inputs
(
5
)
.
set_num_outputs
(
3
)
.
set_num_outputs
(
3
)
.
set_attr_parser
(
ParamParser
<
BatchNormParam
>
)
.
set_attr_parser
(
ParamParser
<
BatchNormParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
BatchNormInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
5
,
3
>
)
.
set_attr
<
FListInputNames
>
(
"FListInputNames"
,
[](
const
NodeAttrs
&
attrs
)
{
.
set_attr
<
FListInputNames
>
(
"FListInputNames"
,
[](
const
NodeAttrs
&
attrs
)
{
return
std
::
vector
<
std
::
string
>
{
"data"
,
"gamma"
,
"beta"
,
"moving_mean"
,
"moving_var"
};
return
std
::
vector
<
std
::
string
>
{
"data"
,
"gamma"
,
"beta"
,
"moving_mean"
,
"moving_var"
};
})
})
...
@@ -198,8 +219,6 @@ NNVM_REGISTER_OP(softmax)
...
@@ -198,8 +219,6 @@ NNVM_REGISTER_OP(softmax)
.
set_support_level
(
1
);
.
set_support_level
(
1
);
// log_softmax
// log_softmax
DMLC_REGISTER_PARAMETER
(
LogSoftmaxParam
);
NNVM_REGISTER_OP
(
log_softmax
)
NNVM_REGISTER_OP
(
log_softmax
)
.
describe
(
R"code(Computes softmax.
.
describe
(
R"code(Computes softmax.
...
@@ -208,7 +227,23 @@ NNVM_REGISTER_OP(log_softmax)
...
@@ -208,7 +227,23 @@ NNVM_REGISTER_OP(log_softmax)
)code"
NNVM_ADD_FILELINE
)
)code"
NNVM_ADD_FILELINE
)
.
set_num_inputs
(
1
)
.
set_num_inputs
(
1
)
.
set_num_outputs
(
1
)
.
set_num_outputs
(
1
)
.
set_attr_parser
(
ParamParser
<
LogSoftmaxParam
>
)
.
set_attr_parser
(
ParamParser
<
SoftmaxParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
ElemwiseShape
<
1
,
1
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_support_level
(
1
);
// leaky_rlu
DMLC_REGISTER_PARAMETER
(
LeakyReLUParam
);
NNVM_REGISTER_OP
(
leaky_relu
)
.
describe
(
R"code(Leaky version of a Rectified Linear Unit.
`y = x > 0 ? x : alpha * x`
)code"
NNVM_ADD_FILELINE
)
.
set_num_inputs
(
1
)
.
set_num_outputs
(
1
)
.
set_attr_parser
(
ParamParser
<
LeakyReLUParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
ElemwiseShape
<
1
,
1
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
ElemwiseShape
<
1
,
1
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
set_support_level
(
1
);
.
set_support_level
(
1
);
...
...
nnvm/src/top/tensor/elemwise.cc
0 → 100644
View file @
13388655
/*!
* Copyright (c) 2017 by Contributors
* \file elemwise.cc
* \brief Elemenwise operators
*/
#include <nnvm/op.h>
#include <nnvm/node.h>
#include <nnvm/op_attr_types.h>
#include <nnvm/top/tensor.h>
#include "../op_common.h"
#include "../elemwise_op_common.h"
namespace
nnvm
{
namespace
top
{
// sigmoid
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
sigmoid
)
.
describe
(
R"code(Computes sigmoid.
.. math::
y = 1 / (1 + exp(-x))
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// tanh
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
tanh
)
.
describe
(
R"code(Returns the hyperbolic tangent of the input array, computed element-wise.
.. math::
tanh(x) = sinh(x) / cosh(x)
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// exp
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
exp
)
.
describe
(
R"code(Returns the exp input array, computed element-wise.
.. math::
exp(x)
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// log
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
log
)
.
describe
(
R"code(Returns the log input array, computed element-wise.
.. math::
log(x)
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// binary ops
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_add
)
.
describe
(
R"code(Element-wise add
)code"
)
.
set_support_level
(
1
);
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_sub
)
.
describe
(
R"code(Element-wise substraction
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_mul
)
.
describe
(
R"code(Element-wise multiplication
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_div
)
.
describe
(
R"code(Element-wise multiplication
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// negative
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
negative
)
.
describe
(
R"code(Elemenwise numeric negative
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
3
);
// copy
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
copy
)
.
describe
(
R"code(Copy tensor to another one.
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
3
);
// unary scalar op
DMLC_REGISTER_PARAMETER
(
ScalarParam
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__add_scalar__
)
.
describe
(
R"code(Tensor add scalar
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__sub_scalar__
)
.
describe
(
R"code(Tensor substract scalar
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__rsub_scalar__
)
.
describe
(
R"code(scalar substract Tensor
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__mul_scalar__
)
.
describe
(
R"code(Tensor multiplies scalar
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__div_scalar__
)
.
describe
(
R"code(Tensor divides scalar
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__rdiv_scalar__
)
.
describe
(
R"code(scalar divides Tensor
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__pow_scalar__
)
.
describe
(
R"code(Tensor power scalar
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
__rpow_scalar__
)
.
describe
(
R"code(scalar power Tensor
)code"
NNVM_ADD_FILELINE
)
.
set_attr_parser
(
ParamParser
<
ScalarParam
>
)
.
set_support_level
(
3
);
}
// namespace top
}
// namespace nnvm
nnvm/src/top/tensor.cc
→
nnvm/src/top/tensor
/transform
.cc
View file @
13388655
/*!
/*!
* Copyright (c) 2017 by Contributors
* Copyright (c) 2017 by Contributors
* \file t
ensor
.cc
* \file t
ransform
.cc
* \brief
Property def of tensor operators
.
* \brief
Injective transformation of shape or type
.
*/
*/
#include <nnvm/op.h>
#include <nnvm/op.h>
#include <nnvm/node.h>
#include <nnvm/node.h>
#include <nnvm/op_attr_types.h>
#include <nnvm/op_attr_types.h>
#include <nnvm/top/tensor.h>
#include <nnvm/top/tensor.h>
#include "./op_common.h"
#include ".
.
/op_common.h"
#include "./elemwise_op_common.h"
#include ".
.
/elemwise_op_common.h"
namespace
nnvm
{
namespace
nnvm
{
namespace
top
{
namespace
top
{
// sigmoid
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
sigmoid
)
.
describe
(
R"code(Computes sigmoid.
.. math::
y = 1 / (1 + exp(-x))
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// tanh
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
tanh
)
.
describe
(
R"code(Returns the hyperbolic tangent of the input array, computed element-wise.
.. math::
tanh(x) = sinh(x) / cosh(x)
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// exp
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
exp
)
.
describe
(
R"code(Returns the exp input array, computed element-wise.
.. math::
exp(x)
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// log
NNVM_REGISTER_ELEMWISE_UNARY_OP
(
log
)
.
describe
(
R"code(Returns the log input array, computed element-wise.
.. math::
log(x)
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// flatten
// flatten
inline
bool
FlattenInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
inline
bool
FlattenInferShape
(
const
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_attrs
,
std
::
vector
<
TShape
>
*
in_attrs
,
std
::
vector
<
TShape
>
*
out_attrs
)
{
std
::
vector
<
TShape
>
*
out_attrs
)
{
CHECK_EQ
(
in_attrs
->
size
(),
1U
)
<<
"Input: [data]"
;
CHECK_EQ
(
in_attrs
->
size
(),
1U
)
<<
"Input: [data]"
;
...
@@ -100,7 +61,7 @@ Example::
...
@@ -100,7 +61,7 @@ Example::
// concatenate
// concatenate
DMLC_REGISTER_PARAMETER
(
ConcatenateParam
);
DMLC_REGISTER_PARAMETER
(
ConcatenateParam
);
inline
bool
ConcatenateInferShape
(
const
nnvm
::
NodeAttrs
&
attrs
,
inline
bool
ConcatenateInferShape
(
const
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
in_shape
,
std
::
vector
<
TShape
>
*
out_shape
)
{
std
::
vector
<
TShape
>
*
out_shape
)
{
const
ConcatenateParam
&
param
=
nnvm
::
get
<
ConcatenateParam
>
(
attrs
.
parsed
);
const
ConcatenateParam
&
param
=
nnvm
::
get
<
ConcatenateParam
>
(
attrs
.
parsed
);
...
@@ -170,7 +131,7 @@ Example::
...
@@ -170,7 +131,7 @@ Example::
)code"
NNVM_ADD_FILELINE
)
)code"
NNVM_ADD_FILELINE
)
.
set_num_outputs
(
1
)
.
set_num_outputs
(
1
)
.
set_num_inputs
(
nnvm
::
kVarg
)
.
set_num_inputs
(
kVarg
)
.
set_attr_parser
(
ParamParser
<
ConcatenateParam
>
)
.
set_attr_parser
(
ParamParser
<
ConcatenateParam
>
)
.
add_argument
(
"data"
,
"Tensor-or-Tensor[]"
,
"List of arrays to concatenate"
)
.
add_argument
(
"data"
,
"Tensor-or-Tensor[]"
,
"List of arrays to concatenate"
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
ConcatenateInferShape
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
ConcatenateInferShape
)
...
@@ -178,34 +139,11 @@ Example::
...
@@ -178,34 +139,11 @@ Example::
.
add_arguments
(
ConcatenateParam
::
__FIELDS__
())
.
add_arguments
(
ConcatenateParam
::
__FIELDS__
())
.
set_support_level
(
1
);
.
set_support_level
(
1
);
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_add
)
.
describe
(
R"code(Element-wise add
)code"
)
.
set_support_level
(
1
);
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_sub
)
.
describe
(
R"code(Element-wise substraction
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_mul
)
.
describe
(
R"code(Element-wise multiplication
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
NNVM_REGISTER_ELEMWISE_BINARY_OP
(
elemwise_div
)
.
describe
(
R"code(Element-wise multiplication
)code"
NNVM_ADD_FILELINE
)
.
set_support_level
(
1
);
// cast
// cast
DMLC_REGISTER_PARAMETER
(
CastParam
);
DMLC_REGISTER_PARAMETER
(
CastParam
);
inline
bool
CastInferType
(
const
nnvm
::
NodeAttrs
&
attrs
,
inline
bool
CastInferType
(
const
NodeAttrs
&
attrs
,
std
::
vector
<
int
>
*
in_attrs
,
std
::
vector
<
int
>
*
in_attrs
,
std
::
vector
<
int
>
*
out_attrs
)
{
std
::
vector
<
int
>
*
out_attrs
)
{
const
CastParam
&
param
=
nnvm
::
get
<
CastParam
>
(
attrs
.
parsed
);
const
CastParam
&
param
=
nnvm
::
get
<
CastParam
>
(
attrs
.
parsed
);
...
@@ -227,5 +165,155 @@ NNVM_REGISTER_OP(cast)
...
@@ -227,5 +165,155 @@ NNVM_REGISTER_OP(cast)
.
set_num_outputs
(
1
)
.
set_num_outputs
(
1
)
.
set_support_level
(
1
);
.
set_support_level
(
1
);
// reshape
DMLC_REGISTER_PARAMETER
(
ReshapeParam
);
inline
bool
ReshapeInferShape
(
const
NodeAttrs
&
attrs
,
std
::
vector
<
TShape
>
*
in_attrs
,
std
::
vector
<
TShape
>
*
out_attrs
)
{
const
ReshapeParam
&
param
=
nnvm
::
get
<
ReshapeParam
>
(
attrs
.
parsed
);
CHECK_GT
(
param
.
shape
.
ndim
(),
0
);
CHECK_EQ
(
in_attrs
->
size
(),
1U
)
<<
"Input: [data]"
;
CHECK_EQ
(
out_attrs
->
size
(),
1U
);
const
TShape
&
dshape
=
(
*
in_attrs
)[
0
];
if
(
dshape
.
ndim
()
==
0
)
return
false
;
const
Tuple
<
int64_t
>&
target_shape
=
param
.
shape
;
std
::
vector
<
int64_t
>
oshape
;
dim_t
src_idx
=
0
;
int
infer_idx
=
-
1
;
for
(
dim_t
i
=
0
;
i
<
target_shape
.
ndim
();
++
i
)
{
int
svalue
=
target_shape
[
i
];
// special flag handling for shape inference.
if
(
svalue
>
0
)
{
oshape
.
push_back
(
svalue
);
++
src_idx
;
}
else
if
(
svalue
==
0
)
{
// keep same
CHECK_LT
(
src_idx
,
dshape
.
ndim
());
oshape
.
push_back
(
dshape
[
src_idx
++
]);
}
else
if
(
svalue
==
-
1
)
{
// inference based on rest
CHECK_LT
(
infer_idx
,
0
)
<<
"One and only one dim can be inferred"
;
infer_idx
=
i
;
oshape
.
push_back
(
1
);
++
src_idx
;
}
else
if
(
svalue
==
-
2
)
{
// copy all remaining dims from source
while
(
src_idx
<
dshape
.
ndim
())
{
oshape
.
push_back
(
dshape
[
src_idx
++
]);
}
}
else
if
(
svalue
==
-
3
)
{
// merge two dims from source
CHECK_LT
(
src_idx
+
1
,
dshape
.
ndim
());
dim_t
d1
=
dshape
[
src_idx
++
];
dim_t
d2
=
dshape
[
src_idx
++
];
oshape
.
push_back
(
d1
*
d2
);
}
else
if
(
svalue
==
-
4
)
{
// split the source dim s into two dims
// read the left dim and then the right dim (either can be -1)
CHECK_LT
(
i
+
2
,
target_shape
.
ndim
());
CHECK_LT
(
src_idx
,
dshape
.
ndim
());
dim_t
d0
=
dshape
[
src_idx
++
];
int
d1
=
target_shape
[
++
i
];
int
d2
=
target_shape
[
++
i
];
CHECK
(
d1
!=
-
1
||
d2
!=
-
1
)
<<
"Split dims cannot both be -1."
;
if
(
d1
==
-
1
)
d1
=
d0
/
d2
;
if
(
d2
==
-
1
)
d2
=
d0
/
d1
;
CHECK_EQ
(
d1
*
d2
,
static_cast
<
int
>
(
d0
))
<<
"Split dims "
<<
d1
<<
", "
<<
d2
<<
" do not divide original dim "
<<
d0
;
oshape
.
push_back
(
d1
);
oshape
.
push_back
(
d2
);
}
}
if
(
infer_idx
>=
0
)
{
if
(
dshape
.
Size
()
>
0
)
{
int
new_size
=
1
;
for
(
int
x
:
oshape
)
{
new_size
*=
x
;
}
oshape
[
infer_idx
]
=
dshape
.
Size
()
/
new_size
;
}
else
{
oshape
[
infer_idx
]
=
0
;
}
}
TShape
out_shape
(
oshape
.
begin
(),
oshape
.
end
());
CHECK_EQ
(
out_shape
.
Size
(),
dshape
.
Size
())
<<
"Target shape size is different to source. "
<<
"Target: "
<<
out_shape
<<
"
\n
Source: "
<<
dshape
;
NNVM_ASSIGN_OUTPUT_SHAPE
(
attrs
,
*
out_attrs
,
0
,
out_shape
);
return
true
;
}
NNVM_REGISTER_OP
(
reshape
)
.
describe
(
R"code(Reshapes the input array.
Given an array and a shape, this function returns a copy of the array in the new shape.
The shape is a tuple of integers such as (2,3,4).The size of the new shape should be same as the size of the input array.
Example::
reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]]
To give user more convenience in without doing manual shape inference,
some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}.
The significance of each is explained below:
- ``0`` copy this dimension from the input to the output shape.
Example::
- input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2)
- input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4)
- ``-1`` infers the dimension of the output shape by using the remainder of the input dimensions
keeping the size of the new array same as that of the input array.
At most one dimension of shape can be -1.
Example::
- input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4)
- input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8)
- input shape = (2,3,4), shape=(-1,), output shape = (24,)
- ``-2`` copy all/remainder of the input dimensions to the output shape.
Example::
- input shape = (2,3,4), shape = (-2,), output shape = (2,3,4)
- input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4)
- input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1)
- ``-3`` use the product of two consecutive dimensions of the input shape as the output dimension.
Example::
- input shape = (2,3,4), shape = (-3,4), output shape = (6,4)
- input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)
- input shape = (2,3,4), shape = (0,-3), output shape = (2,12)
- input shape = (2,3,4), shape = (-3,-2), output shape = (6,4)
- ``-4`` split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1).
Example::
- input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4)
- input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4)
)code"
NNVM_ADD_FILELINE
)
.
set_num_inputs
(
1
)
.
set_num_outputs
(
1
)
.
set_attr_parser
(
ParamParser
<
ReshapeParam
>
)
.
set_attr
<
FInferShape
>
(
"FInferShape"
,
ReshapeInferShape
)
.
set_attr
<
FInferType
>
(
"FInferType"
,
ElemwiseType
<
1
,
1
>
)
.
add_argument
(
"data"
,
"Tensor"
,
"Input data."
)
.
set_support_level
(
3
);
}
// namespace top
}
// namespace top
}
// namespace nnvm
}
// namespace nnvm
nnvm/tests/python/test_graph.py
→
nnvm/tests/python/
unittest/
test_graph.py
View file @
13388655
File moved
nnvm/tests/python/unittest/test_infer_shape.py
0 → 100644
View file @
13388655
import
json
import
nnvm.symbol
as
sym
import
nnvm.graph
as
graph
def
infer_shape
(
sym
):
g
=
graph
.
create
(
sym
)
g
.
_set_json_attr
(
"shape_attr_key"
,
"shape"
)
g
=
g
.
apply
(
"InferShape"
)
jgraph
=
json
.
loads
(
g
.
apply
(
"SaveJSON"
)
.
json_attr
(
"json"
))
jnodes
=
jgraph
[
"nodes"
]
jnode_row_ptr
=
jgraph
[
"node_row_ptr"
]
sdict
=
{}
vshape
=
g
.
json_attr
(
"shape"
)
for
i
,
n
in
enumerate
(
jnodes
):
begin
,
end
=
jnode_row_ptr
[
i
],
jnode_row_ptr
[
i
+
1
]
sdict
[
n
[
"name"
]]
=
vshape
[
begin
:
end
]
return
sdict
# Level 1
def
test_dense
():
x
=
sym
.
Variable
(
"x"
,
shape
=
(
10
,
20
))
y
=
sym
.
dense
(
x
,
units
=
30
,
name
=
"fc"
)
sdict
=
infer_shape
(
y
)
assert
(
sdict
[
"fc"
][
0
]
==
[
10
,
30
])
assert
(
sdict
[
"fc_bias"
][
0
]
==
[
30
])
def
test_concatenate
():
x1
=
sym
.
Variable
(
"x"
,
shape
=
(
10
,
20
))
x2
=
sym
.
Variable
(
"y"
,
shape
=
(
10
,
30
))
z
=
sym
.
concatenate
(
x1
,
x2
,
name
=
"concat"
)
sdict
=
infer_shape
(
z
)
assert
(
sdict
[
"concat"
][
0
]
==
[
10
,
50
])
z
=
sym
.
concatenate
(
x1
,
x1
,
axis
=
0
,
name
=
"concat"
)
sdict
=
infer_shape
(
z
)
assert
(
sdict
[
"concat"
][
0
]
==
[
20
,
20
])
def
test_batchnorm
():
x
=
sym
.
Variable
(
"x"
,
shape
=
(
10
,
20
))
y
=
sym
.
batch_norm
(
1
/
x
,
name
=
"bn"
)
sdict
=
infer_shape
(
y
)
assert
(
sdict
[
"bn_gamma"
][
0
]
==
[
20
])
def
test_flatten
():
x
=
sym
.
Variable
(
"x"
,
shape
=
(
10
,
20
,
10
))
y
=
sym
.
flatten
(
x
)
*
2
y
=
sym
.
exp
(
y
,
name
=
"y"
)
sdict
=
infer_shape
(
y
)
assert
(
sdict
[
"y"
][
0
]
==
[
10
,
200
])
# Level 3
def
test_reshape
():
def
check
(
in_shape
,
tshape
,
out_shape
):
x
=
sym
.
Variable
(
"x"
,
shape
=
in_shape
)
y
=
sym
.
reshape
(
x
,
shape
=
tshape
,
name
=
"y"
)
sdict
=
infer_shape
(
y
)
assert
(
tuple
(
sdict
[
"y"
][
0
])
==
tuple
(
out_shape
))
check
((
4
,),
(
2
,
2
),
(
2
,
2
))
check
((
2
,
3
,
4
),
(
4
,
0
,
2
),
(
4
,
3
,
2
))
check
((
2
,
3
,
4
),
(
2
,
0
,
0
),
(
2
,
3
,
4
))
check
((
2
,
3
,
4
),
(
6
,
1
,
-
1
),
(
6
,
1
,
4
))
check
((
2
,
3
,
4
),
(
3
,
-
1
,
8
),
(
3
,
1
,
8
))
check
((
2
,
3
,
4
),
(
-
1
,),
(
24
,))
check
((
2
,
3
,
4
),
(
-
2
,),
(
2
,
3
,
4
))
check
((
2
,
3
,
4
),
(
2
,
-
2
),
(
2
,
3
,
4
))
check
((
2
,
3
,
4
),
(
-
2
,
1
,
1
),
(
2
,
3
,
4
,
1
,
1
))
check
((
2
,
3
,
4
),
(
-
3
,
4
),
(
6
,
4
))
check
((
2
,
3
,
4
,
5
),
(
-
3
,
-
3
),
(
6
,
20
))
check
((
2
,
3
,
4
),
(
0
,
-
3
),
(
2
,
12
))
check
((
2
,
3
,
4
),
(
-
3
,
-
2
),
(
6
,
4
))
check
((
2
,
3
,
4
),
(
-
4
,
1
,
2
,
-
2
),
(
1
,
2
,
3
,
4
))
check
((
2
,
3
,
4
),
(
2
,
-
4
,
-
1
,
3
,
-
2
),
(
2
,
1
,
3
,
4
))
if
__name__
==
"__main__"
:
test_dense
()
test_concatenate
()
test_batchnorm
()
test_flatten
()
test_reshape
()
nnvm/tests/python/test_symbol.py
→
nnvm/tests/python/
unittest/
test_symbol.py
View file @
13388655
File moved
nnvm/tests/python/test_top_level1.py
→
nnvm/tests/python/
unittest/
test_top_level1.py
View file @
13388655
File moved
nnvm/tests/python/unittest/test_top_level3.py
0 → 100644
View file @
13388655
import
nnvm.symbol
as
sym
def
test_reshape
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
reshape
(
x
,
shape
=
(
10
,
20
),
name
=
"y"
)
assert
(
y
.
list_input_names
()
==
[
"x"
])
def
test_scalar_op
():
x
=
sym
.
Variable
(
"x"
)
y
=
(
1
/
(
x
*
2
)
-
1
)
**
2
assert
(
y
.
list_input_names
()
==
[
"x"
])
def
test_leaky_relu
():
x
=
sym
.
Variable
(
"x"
)
y
=
sym
.
leaky_relu
(
x
,
alpha
=
0.1
)
assert
(
y
.
list_input_names
()
==
[
"x"
])
if
__name__
==
"__main__"
:
test_scalar_op
()
test_reshape
()
test_leaky_relu
()
nnvm/tests/travis/run_test.sh
View file @
13388655
...
@@ -37,22 +37,22 @@ if [ ${TASK} == "python_test" ]; then
...
@@ -37,22 +37,22 @@ if [ ${TASK} == "python_test" ]; then
make clean
make clean
make
-j
all
||
exit
-1
make
-j
all
||
exit
-1
if
[
${
TRAVIS_OS_NAME
}
==
"osx"
]
;
then
if
[
${
TRAVIS_OS_NAME
}
==
"osx"
]
;
then
python
-m
nose tests/python/
||
exit
-1
python
-m
nose tests/python/
unittest/
||
exit
-1
python3
-m
nose tests/python/
||
exit
-1
python3
-m
nose tests/python/
unittest/
||
exit
-1
else
else
nosetests tests/python/
||
exit
-1
nosetests tests/python/
unittest/
||
exit
-1
nosetests3 tests/python/
||
exit
-1
nosetests3 tests/python/
unittest/
||
exit
-1
fi
fi
make cython
||
exit
-1
make cython
||
exit
-1
make cython3
||
exit
-1
make cython3
||
exit
-1
if
[
${
TRAVIS_OS_NAME
}
==
"osx"
]
;
then
if
[
${
TRAVIS_OS_NAME
}
==
"osx"
]
;
then
python
-m
nose tests/python/
||
exit
-1
python
-m
nose tests/python/
unittest/
||
exit
-1
python3
-m
nose tests/python/
||
exit
-1
python3
-m
nose tests/python/
unittest/
||
exit
-1
else
else
nosetests tests/python/
||
exit
-1
nosetests tests/python/
unittest/
||
exit
-1
nosetests3 tests/python/
||
exit
-1
nosetests3 tests/python/
unittest/
||
exit
-1
fi
fi
exit
0
exit
0
fi
fi
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment