Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
11da1ca3
Commit
11da1ca3
authored
Jul 31, 2019
by
Wuwei Lin
Committed by
masahi
Jul 31, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TOPI][CUDA] schedule for group_conv2d (#3663)
* [TOPI][CUDA] schedule for group_conv2d * Fix #flops
parent
83591aa5
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
119 additions
and
6 deletions
+119
-6
topi/python/topi/cuda/group_conv2d_nchw.py
+118
-2
topi/tests/python/test_topi_group_conv2d.py
+1
-4
No files found.
topi/python/topi/cuda/group_conv2d_nchw.py
View file @
11da1ca3
...
@@ -321,8 +321,124 @@ def schedule_group_conv2d_NCHWc_int8(cfg, s, output):
...
@@ -321,8 +321,124 @@ def schedule_group_conv2d_NCHWc_int8(cfg, s, output):
return
s
return
s
def
schedule_group_conv2d_nchw_direct
(
cfg
,
s
,
conv
):
"""Schedule group conv2d NCHW direct template"""
workload
=
conv
.
op
.
attrs
[
"workload"
]
groups
=
get_const_int
(
workload
[
6
])
num_filters
=
get_const_int
(
conv
.
shape
[
1
])
##### space definition begin #####
n
,
f
,
y
,
x
=
s
[
conv
]
.
op
.
axis
rc
,
ry
,
rx
=
s
[
conv
]
.
op
.
reduce_axis
cfg
.
define_split
(
"tile_n"
,
n
,
num_outputs
=
4
)
cfg
.
define_split
(
"tile_g"
,
cfg
.
axis
(
groups
),
num_outputs
=
2
)
cfg
.
define_split
(
"tile_f"
,
cfg
.
axis
(
num_filters
//
groups
),
num_outputs
=
4
)
cfg
.
define_split
(
"tile_y"
,
y
,
num_outputs
=
4
)
cfg
.
define_split
(
"tile_x"
,
x
,
num_outputs
=
4
)
cfg
.
define_split
(
"tile_rc"
,
rc
,
num_outputs
=
2
)
cfg
.
define_split
(
"tile_ry"
,
ry
,
num_outputs
=
2
)
cfg
.
define_split
(
"tile_rx"
,
rx
,
num_outputs
=
2
)
cfg
.
define_knob
(
"auto_unroll_max_step"
,
[
0
,
512
,
1500
])
target
=
tvm
.
target
.
current_target
()
if
target
.
target_name
in
[
'nvptx'
,
'rocm'
]:
cfg
.
define_knob
(
"unroll_explicit"
,
[
1
])
else
:
cfg
.
define_knob
(
"unroll_explicit"
,
[
0
,
1
])
pad_data
,
kernel
=
s
[
conv
]
.
op
.
input_tensors
s
[
pad_data
]
.
compute_inline
()
if
conv
.
op
in
s
.
outputs
:
output
=
conv
OL
=
s
.
cache_write
(
conv
,
'local'
)
else
:
output
=
s
.
outputs
[
0
]
.
output
(
0
)
s
[
conv
]
.
set_scope
(
'local'
)
OL
=
conv
# create cache stage
AA
=
s
.
cache_read
(
pad_data
,
'shared'
,
[
OL
])
WW
=
s
.
cache_read
(
kernel
,
'shared'
,
[
OL
])
# tile and bind spatial axes
n
,
f
,
y
,
x
=
s
[
output
]
.
op
.
axis
kernel_scope
,
n
=
s
[
output
]
.
split
(
n
,
nparts
=
1
)
g
,
f
=
s
[
output
]
.
split
(
f
,
nparts
=
groups
)
bn
,
vn
,
tn
,
ni
=
cfg
[
"tile_n"
]
.
apply
(
s
,
output
,
n
)
bg
,
vg
=
cfg
[
"tile_g"
]
.
apply
(
s
,
output
,
g
)
bf
,
vf
,
tf
,
fi
=
cfg
[
"tile_f"
]
.
apply
(
s
,
output
,
f
)
by
,
vy
,
ty
,
yi
=
cfg
[
"tile_y"
]
.
apply
(
s
,
output
,
y
)
bx
,
vx
,
tx
,
xi
=
cfg
[
"tile_x"
]
.
apply
(
s
,
output
,
x
)
s
[
output
]
.
reorder
(
bn
,
bg
,
bf
,
by
,
bx
,
vn
,
vg
,
vf
,
vy
,
vx
,
tn
,
tf
,
ty
,
tx
,
ni
,
fi
,
yi
,
xi
)
s
[
output
]
.
bind
(
bn
,
tvm
.
thread_axis
(
"blockIdx.z"
))
s
[
output
]
.
bind
(
s
[
output
]
.
fuse
(
bg
,
bf
),
tvm
.
thread_axis
(
"blockIdx.y"
))
s
[
output
]
.
bind
(
s
[
output
]
.
fuse
(
by
,
bx
),
tvm
.
thread_axis
(
"blockIdx.x"
))
s
[
output
]
.
bind
(
vn
,
tvm
.
thread_axis
(
"vthread"
))
s
[
output
]
.
bind
(
vg
,
tvm
.
thread_axis
(
"vthread"
))
s
[
output
]
.
bind
(
vf
,
tvm
.
thread_axis
(
"vthread"
))
s
[
output
]
.
bind
(
vy
,
tvm
.
thread_axis
(
"vthread"
))
s
[
output
]
.
bind
(
vx
,
tvm
.
thread_axis
(
"vthread"
))
cfg
.
define_knob
(
"fuse_yx"
,
[
0
,
1
])
# fuse ty,tx or tn,tf
if
cfg
[
"fuse_yx"
]
.
val
:
s
[
output
]
.
bind
(
tn
,
tvm
.
thread_axis
(
"threadIdx.z"
))
s
[
output
]
.
bind
(
tf
,
tvm
.
thread_axis
(
"threadIdx.y"
))
tyx
=
s
[
output
]
.
fuse
(
ty
,
tx
)
s
[
output
]
.
bind
(
tyx
,
tvm
.
thread_axis
(
"threadIdx.x"
))
s
[
OL
]
.
compute_at
(
s
[
output
],
tyx
)
# number of threads
n_tz
=
cfg
[
"tile_n"
]
.
size
[
2
]
n_ty
=
cfg
[
"tile_f"
]
.
size
[
2
]
n_tx
=
cfg
[
"tile_y"
]
.
size
[
2
]
*
cfg
[
"tile_x"
]
.
size
[
2
]
else
:
s
[
output
]
.
bind
(
s
[
output
]
.
fuse
(
tn
,
tf
),
tvm
.
thread_axis
(
"threadIdx.z"
))
s
[
output
]
.
bind
(
ty
,
tvm
.
thread_axis
(
"threadIdx.y"
))
s
[
output
]
.
bind
(
tx
,
tvm
.
thread_axis
(
"threadIdx.x"
))
s
[
OL
]
.
compute_at
(
s
[
output
],
tx
)
# number of threads
n_tz
=
cfg
[
"tile_n"
]
.
size
[
2
]
*
cfg
[
"tile_f"
]
.
size
[
2
]
n_ty
=
cfg
[
"tile_y"
]
.
size
[
2
]
n_tx
=
cfg
[
"tile_x"
]
.
size
[
2
]
# tile reduction axes
n
,
f
,
y
,
x
=
s
[
OL
]
.
op
.
axis
rc
,
ry
,
rx
=
s
[
OL
]
.
op
.
reduce_axis
rco
,
rci
=
cfg
[
'tile_rc'
]
.
apply
(
s
,
OL
,
rc
)
ryo
,
ryi
=
cfg
[
'tile_rx'
]
.
apply
(
s
,
OL
,
ry
)
rxo
,
rxi
=
cfg
[
'tile_ry'
]
.
apply
(
s
,
OL
,
rx
)
s
[
OL
]
.
reorder
(
rco
,
ryo
,
rxo
,
rci
,
ryi
,
rxi
,
n
,
f
,
y
,
x
)
s
[
AA
]
.
compute_at
(
s
[
OL
],
rxo
)
s
[
WW
]
.
compute_at
(
s
[
OL
],
rxo
)
# cooperative fetching
for
load
in
[
AA
,
WW
]:
n
,
f
,
y
,
x
=
s
[
load
]
.
op
.
axis
fused
=
s
[
load
]
.
fuse
(
n
,
f
,
y
,
x
)
fused
,
tx
=
s
[
load
]
.
split
(
fused
,
factor
=
n_tx
)
fused
,
ty
=
s
[
load
]
.
split
(
fused
,
factor
=
n_ty
)
fused
,
tz
=
s
[
load
]
.
split
(
fused
,
factor
=
n_tz
)
s
[
load
]
.
bind
(
tz
,
tvm
.
thread_axis
(
"threadIdx.z"
))
s
[
load
]
.
bind
(
ty
,
tvm
.
thread_axis
(
"threadIdx.y"
))
s
[
load
]
.
bind
(
tx
,
tvm
.
thread_axis
(
"threadIdx.x"
))
# unroll
s
[
output
]
.
pragma
(
kernel_scope
,
'auto_unroll_max_step'
,
cfg
[
'auto_unroll_max_step'
]
.
val
)
s
[
output
]
.
pragma
(
kernel_scope
,
'unroll_explicit'
,
cfg
[
'unroll_explicit'
]
.
val
)
N
,
CO
,
OH
,
OW
=
get_const_tuple
(
output
.
shape
)
_
,
CI_div_groups
,
KH
,
KW
=
get_const_tuple
(
kernel
.
shape
)
cfg
.
add_flop
(
2
*
N
*
OH
*
OW
*
CO
*
CI_div_groups
*
KH
*
KW
)
@autotvm.register_topi_schedule
(
generic
.
schedule_group_conv2d_nchw
,
@autotvm.register_topi_schedule
(
generic
.
schedule_group_conv2d_nchw
,
[
"cuda"
,
"gpu"
],
[
"int8"
])
[
"cuda"
,
"gpu"
],
[
"int8"
,
"direct"
])
def
schedule_conv2d_nchw_cuda
(
cfg
,
outs
):
def
schedule_conv2d_nchw_cuda
(
cfg
,
outs
):
"""TOPI schedule callback of group conv2d for cuda gpu
"""TOPI schedule callback of group conv2d for cuda gpu
...
@@ -347,7 +463,7 @@ def schedule_conv2d_nchw_cuda(cfg, outs):
...
@@ -347,7 +463,7 @@ def schedule_conv2d_nchw_cuda(cfg, outs):
if
op
.
tag
==
"group_conv2d_NCHWc_int8"
:
if
op
.
tag
==
"group_conv2d_NCHWc_int8"
:
schedule_group_conv2d_NCHWc_int8
(
cfg
,
s
,
op
.
output
(
0
))
schedule_group_conv2d_NCHWc_int8
(
cfg
,
s
,
op
.
output
(
0
))
if
op
.
tag
==
"group_conv2d_nchw"
:
if
op
.
tag
==
"group_conv2d_nchw"
:
raise
tvm
.
error
.
OpNotImplemented
(
"group_conv2d_nchw not supported"
)
schedule_group_conv2d_nchw_direct
(
cfg
,
s
,
op
.
output
(
0
)
)
traverse_inline
(
s
,
outs
[
0
]
.
op
,
_callback
)
traverse_inline
(
s
,
outs
[
0
]
.
op
,
_callback
)
return
s
return
s
topi/tests/python/test_topi_group_conv2d.py
View file @
11da1ca3
...
@@ -67,9 +67,6 @@ def verify_group_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, str
...
@@ -67,9 +67,6 @@ def verify_group_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, str
if
not
ctx
.
exist
:
if
not
ctx
.
exist
:
print
(
"Skip because
%
s is not enabled"
%
device
)
print
(
"Skip because
%
s is not enabled"
%
device
)
return
return
if
device
==
"cuda"
and
not
tvm
.
contrib
.
nvcc
.
have_int8
(
ctx
.
compute_version
):
print
(
"Skip because int8 intrinsics are not available"
)
return
print
(
"Running on target:
%
s"
%
device
)
print
(
"Running on target:
%
s"
%
device
)
with
tvm
.
target
.
create
(
device
):
with
tvm
.
target
.
create
(
device
):
...
@@ -94,7 +91,7 @@ def verify_group_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, str
...
@@ -94,7 +91,7 @@ def verify_group_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, str
func
(
a
,
w
,
c
)
func
(
a
,
w
,
c
)
tvm
.
testing
.
assert_allclose
(
c
.
asnumpy
(),
c_np
,
rtol
=
1e-5
)
tvm
.
testing
.
assert_allclose
(
c
.
asnumpy
(),
c_np
,
rtol
=
1e-5
)
for
device
in
[
"llvm"
]:
for
device
in
[
"llvm"
,
"cuda"
]:
check_device
(
device
)
check_device
(
device
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment