Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
1119c40b
Unverified
Commit
1119c40b
authored
Jun 17, 2019
by
Tianqi Chen
Committed by
GitHub
Jun 17, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Revert "[Relay][Frontend][ONNX] Fix reshape precompute, and type error (#3230)" (#3385)
This reverts commit
df6957a5
.
parent
5050ab5e
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
74 deletions
+16
-74
python/tvm/relay/frontend/onnx.py
+16
-27
tests/python/frontend/onnx/test_forward.py
+0
-47
No files found.
python/tvm/relay/frontend/onnx.py
View file @
1119c40b
...
@@ -409,24 +409,21 @@ class Reshape(OnnxOpConverter):
...
@@ -409,24 +409,21 @@ class Reshape(OnnxOpConverter):
shape
=
tuple
(
params
[
inputs
[
1
]
.
name_hint
]
.
asnumpy
())
shape
=
tuple
(
params
[
inputs
[
1
]
.
name_hint
]
.
asnumpy
())
out
=
_op
.
reshape
(
inputs
[
0
],
shape
)
out
=
_op
.
reshape
(
inputs
[
0
],
shape
)
else
:
else
:
data
,
shape
=
inputs
# Try to infer shape by precompute prune if possible.
logging
.
warning
(
"Constant evaluating Reshape's shape argument, may reduce performance"
)
# TODO: good to check inputs to be in params.
shape_params
=
ir_pass
.
free_vars
(
shape
)
# to be enhanced when relay support list_input_names API of NNVM
func
=
_expr
.
Function
(
shape_params
,
shape
)
logging
.
warning
(
"Infering Reshape argument by precompute"
)
func
=
ir_pass
.
infer_type
(
func
)
func
=
_expr
.
Function
(
ir_pass
.
free_vars
(
inputs
[
1
]),
inputs
[
1
])
func
=
ir_pass
.
fold_constant
(
func
)
shape_params
=
ir_pass
.
free_vars
(
func
.
body
)
func
=
_expr
.
Function
(
shape_params
,
func
.
body
)
with
tvm
.
relay
.
build_config
(
opt_level
=
0
):
with
tvm
.
relay
.
build_config
(
opt_level
=
0
):
ex
=
tvm
.
relay
.
create_executor
(
"debug"
)
graph
,
lib
,
params
=
tvm
.
relay
.
build
(
func
,
target
=
"llvm"
,
params
=
params
)
inputs
=
[]
ctx
=
tvm
.
context
(
"llvm"
,
0
)
for
sp
in
shape_params
:
from
tvm.contrib
import
graph_runtime
if
not
sp
.
name_hint
in
params
:
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
sh
=
[
int
(
i
)
for
i
in
sp
.
type_annotation
.
shape
]
m
.
set_input
(
**
params
)
inputs
.
append
(
m
.
run
()
tvm
.
nd
.
array
(
np
.
random
.
rand
(
*
sh
)
.
astype
(
'float32'
))
)
params_new
=
m
.
get_output
(
0
)
static_shape
=
ex
.
evaluate
(
func
)(
*
inputs
,
**
params
)
inputs
.
pop
(
1
)
out
=
_op
.
reshape
(
data
,
newshape
=
tuple
(
static_shape
.
asnumpy
()))
out
=
_op
.
reshape
(
inputs
[
0
],
tuple
(
params_new
.
asnumpy
()
.
astype
(
'int32'
)
.
flatten
()))
return
out
return
out
...
@@ -571,7 +568,6 @@ class Shape(OnnxOpConverter):
...
@@ -571,7 +568,6 @@ class Shape(OnnxOpConverter):
@classmethod
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
# TODO(@jroesch): use shape_of once it has been fixed
return
_op
.
shape_of
(
inputs
[
0
])
return
_op
.
shape_of
(
inputs
[
0
])
class
Cast
(
OnnxOpConverter
):
class
Cast
(
OnnxOpConverter
):
...
@@ -1062,15 +1058,8 @@ class GraphProto(object):
...
@@ -1062,15 +1058,8 @@ class GraphProto(object):
if
op_name
==
"Constant"
:
if
op_name
==
"Constant"
:
t_proto
=
self
.
_parse_attr
(
node
.
attribute
)[
"value"
]
t_proto
=
self
.
_parse_attr
(
node
.
attribute
)[
"value"
]
self
.
_num_param
+=
1
self
.
_num_param
+=
1
# We should convert scalar integers to int32, to normalize.
self
.
_params
[
node
.
output
[
0
]]
=
self
.
_parse_array
(
t_proto
)
array
=
self
.
_parse_array
(
t_proto
)
self
.
_nodes
[
node
.
output
[
0
]]
=
new_var
(
node
.
output
[
0
],
shape
=
list
(
t_proto
.
dims
))
if
len
(
array
.
shape
)
==
0
and
array
.
dtype
==
'int64'
:
array
=
_nd
.
array
(
array
.
asnumpy
()
.
astype
(
'int32'
))
self
.
_params
[
node
.
output
[
0
]]
=
array
self
.
_nodes
[
node
.
output
[
0
]]
=
new_var
(
node
.
output
[
0
],
shape
=
list
(
t_proto
.
dims
),
dtype
=
array
.
dtype
)
else
:
else
:
if
op_name
==
"ConstantFill"
:
if
op_name
==
"ConstantFill"
:
fill_value
=
attr
.
get
(
'value'
,
0.0
)
fill_value
=
attr
.
get
(
'value'
,
0.0
)
...
...
tests/python/frontend/onnx/test_forward.py
View file @
1119c40b
...
@@ -14,11 +14,8 @@
...
@@ -14,11 +14,8 @@
# KIND, either express or implied. See the License for the
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# specific language governing permissions and limitations
# under the License.
# under the License.
import
attr
import
numpy
as
np
import
numpy
as
np
import
math
import
math
import
torch
import
torchvision
import
topi
import
topi
import
topi.testing
import
topi.testing
import
tvm
import
tvm
...
@@ -1075,47 +1072,6 @@ def test_LogSoftmax():
...
@@ -1075,47 +1072,6 @@ def test_LogSoftmax():
'LogSoftmax'
,
'LogSoftmax'
,
{
'axis'
:
1
})
{
'axis'
:
1
})
def
check_torch_conversion
(
model
,
input_size
):
dummy_input
=
torch
.
randn
(
*
input_size
)
file_name
=
'{}.onnx'
.
format
(
model
.
__name__
)
# Set verbose=True for more output
torch
.
onnx
.
export
(
model
(),
dummy_input
,
file_name
,
export_params
=
True
,
verbose
=
False
)
onnx_model
=
onnx
.
load
(
file_name
)
shapes
=
{
'0'
:
input_size
}
expr
,
params
=
relay
.
frontend
.
from_onnx
(
onnx_model
,
shape
=
shapes
)
def
test_resnet
():
check_torch_conversion
(
torchvision
.
models
.
resnet18
,
(
1
,
3
,
224
,
224
))
# check_torch_conversion(torchvision.models.resnet101, (1,3,224,224))
# def test_alexnet():
# Torch's ONNX export does not support the adaptive pooling used by AlexNet?
# check_torch_conversion(torchvision.models.alexnet, (1,3,224,224))
# Torch's ONNX export does not support the adaptive pooling used by vgg16?
# def test_vgg16():
# check_torch_conversion(torchvision.models.vgg16, (1,3,224,224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_squeezenet():
# # Torch's ONNX export does not support the max pooling used by Squezenet
# check_torch_conversion(torchvision.models.squeezenet1_0, (1,3,224,224))
def
test_densenet
():
check_torch_conversion
(
torchvision
.
models
.
densenet161
,
(
1
,
3
,
224
,
224
))
def
test_inception
():
check_torch_conversion
(
torchvision
.
models
.
inception_v3
,
(
1
,
3
,
224
,
224
))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_googlenet():
# check_torch_conversion(torchvision.models.googlenet, (1,3,224,224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_shufflenetv2():
# check_torch_conversion(torchvision.models.shufflenetv2, (1,3,224,224))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
test_flatten
()
test_flatten
()
test_reshape
()
test_reshape
()
...
@@ -1155,6 +1111,3 @@ if __name__ == '__main__':
...
@@ -1155,6 +1111,3 @@ if __name__ == '__main__':
test_ParametricSoftplus
()
test_ParametricSoftplus
()
test_Scale
()
test_Scale
()
test_LogSoftmax
()
test_LogSoftmax
()
test_resnet
()
test_inception
()
test_densenet
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment