Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
10b6e7e0
Commit
10b6e7e0
authored
Dec 20, 2018
by
Sergei Grechanik
Committed by
Tianqi Chen
Dec 20, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[TVM] Move check_numerical_grads to tvm.testing_ (#2314)
parent
03872132
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
231 additions
and
110 deletions
+231
-110
nnvm/python/nnvm/testing/check_computation.py
+1
-110
python/tvm/testing.py
+135
-0
tests/python/unittest/test_testing.py
+95
-0
No files found.
nnvm/python/nnvm/testing/check_computation.py
View file @
10b6e7e0
...
@@ -7,6 +7,7 @@ import numpy as np
...
@@ -7,6 +7,7 @@ import numpy as np
import
tvm
import
tvm
from
tvm.contrib
import
graph_runtime
from
tvm.contrib
import
graph_runtime
from
tvm.testing
import
check_numerical_grads
import
nnvm
import
nnvm
from
nnvm.compiler
import
graph_util
from
nnvm.compiler
import
graph_util
...
@@ -535,113 +536,3 @@ def check_function(symbol, forward=None, backward=None, grad_input_vars=None,
...
@@ -535,113 +536,3 @@ def check_function(symbol, forward=None, backward=None, grad_input_vars=None,
if
nothing_was_done
:
if
nothing_was_done
:
logging
.
warning
(
"Nothing was done in check_function. Check ctx_list()."
)
logging
.
warning
(
"Nothing was done in check_function. Check ctx_list()."
)
def
check_numerical_grads
(
function
,
input_values
,
grad_values
,
function_value
=
None
,
delta
=
1e-3
,
atol
=
1e-2
,
rtol
=
0.1
):
"""A helper function that checks that numerical gradients of a function are equal to
gradients computed in some different way (analytical gradients).
Numerical gradients are computed using finite difference approximation. To reduce the number of
function evaluations, the number of points used is gradually increased if the error value is
too high (up to 5 points).
Parameters
----------
function
A function that takes inputs as keyword arguments (like `function(**input_values)`) and
returns a scalar result. Should accept numpy ndarrays.
input_values : Dict[str, numpy.ndarray]
A dict assigning values to variables. Represents the point at which gradients should be
computed.
grad_values : Dict[str, numpy.ndarray]
Gradients computed using a different method.
function_value : float, optional
Should be equal to `function(**input_values)`.
delta : float, optional
A small number used for numerical computation of partial derivatives. The default 1e-3 is a
good choice for float32.
atol : float, optional
Absolute tolerance.
rtol : float, optional
Relative tolerance.
"""
if
function_value
is
None
:
function_value
=
function
(
**
input_values
)
# a helper to modify j-th element of val by a_delta
def
modify
(
val
,
j
,
a_delta
):
val
=
val
.
copy
()
val
.
reshape
(
-
1
)[
j
]
=
val
.
reshape
(
-
1
)[
j
]
+
a_delta
return
val
# numerically compute a partial derivative with respect to j-th element of the var `name`
def
derivative
(
x_name
,
j
,
a_delta
):
modified_values
=
{
n
:
modify
(
val
,
j
,
a_delta
)
if
n
==
x_name
else
val
for
n
,
val
in
input_values
.
items
()}
return
(
function
(
**
modified_values
)
-
function_value
)
/
a_delta
def
compare_derivative
(
j
,
n_der
,
grad
):
der
=
grad
.
reshape
(
-
1
)[
j
]
return
np
.
abs
(
n_der
-
der
)
<
atol
+
rtol
*
np
.
abs
(
n_der
)
for
x_name
,
grad
in
grad_values
.
items
():
if
grad
.
shape
!=
input_values
[
x_name
]
.
shape
:
raise
AssertionError
(
"Gradient wrt '{}' has unexpected shape {}, expected {} "
.
format
(
x_name
,
grad
.
shape
,
input_values
[
x_name
]
.
shape
))
ngrad
=
np
.
zeros_like
(
grad
)
# compute partial derivatives for each position in this variable
for
j
in
range
(
np
.
prod
(
grad
.
shape
)):
# forward difference approximation
nder
=
derivative
(
x_name
,
j
,
delta
)
# if the derivative is not equal to the analytical one, try to use more
# precise and expensive methods
if
not
compare_derivative
(
j
,
nder
,
grad
):
# central difference approximation
nder
=
(
derivative
(
x_name
,
j
,
-
delta
)
+
nder
)
/
2
if
not
compare_derivative
(
j
,
nder
,
grad
):
# central difference approximation using h = delta/2
cnder2
=
(
derivative
(
x_name
,
j
,
delta
/
2
)
+
derivative
(
x_name
,
j
,
-
delta
/
2
))
/
2
# five-point derivative
nder
=
(
4
*
cnder2
-
nder
)
/
3
ngrad
.
reshape
(
-
1
)[
j
]
=
nder
dist
=
np
.
sqrt
(
np
.
sum
((
ngrad
-
grad
)
**
2
))
grad_norm
=
np
.
sqrt
(
np
.
sum
(
ngrad
**
2
))
if
not
(
np
.
isfinite
(
dist
)
and
np
.
isfinite
(
grad_norm
)):
raise
ValueError
(
"NaN or infinity detected during numerical gradient checking wrt {}
\n
"
"analytical grad = {}
\n
numerical grad = {}
\n
"
.
format
(
x_name
,
grad
,
ngrad
))
# we multiple atol by this number to make it more universal for different sizes
sqrt_n
=
np
.
sqrt
(
float
(
np
.
prod
(
grad
.
shape
)))
if
dist
>
atol
*
sqrt_n
+
rtol
*
grad_norm
:
raise
AssertionError
(
"Analytical and numerical grads wrt {} differ too much
\n
"
"analytical grad = {}
\n
numerical grad = {}
\n
"
"distance > atol*sqrt(n) + rtol*grad_norm
\n
"
"distance {} > {}*{} + {}*{}"
.
format
(
x_name
,
grad
,
ngrad
,
dist
,
atol
,
sqrt_n
,
rtol
,
grad_norm
))
max_diff
=
np
.
max
(
np
.
abs
(
ngrad
-
grad
))
avg_diff
=
np
.
mean
(
np
.
abs
(
ngrad
-
grad
))
logging
.
info
(
"Numerical grad test wrt
%
s of shape
%
s passes, "
"dist =
%
f, max_diff =
%
f, avg_diff =
%
f"
,
x_name
,
grad
.
shape
,
dist
,
max_diff
,
avg_diff
)
python/tvm/testing.py
View file @
10b6e7e0
""" TVM testing utilities """
""" TVM testing utilities """
import
logging
import
numpy
as
np
import
numpy
as
np
def
assert_allclose
(
actual
,
desired
,
rtol
=
1e-7
,
atol
=
1e-7
):
def
assert_allclose
(
actual
,
desired
,
rtol
=
1e-7
,
atol
=
1e-7
):
...
@@ -10,3 +11,137 @@ def assert_allclose(actual, desired, rtol=1e-7, atol=1e-7):
...
@@ -10,3 +11,137 @@ def assert_allclose(actual, desired, rtol=1e-7, atol=1e-7):
often allow `desired` to be close to zero, we generally want non-zero `atol`.
often allow `desired` to be close to zero, we generally want non-zero `atol`.
"""
"""
np
.
testing
.
assert_allclose
(
actual
,
desired
,
rtol
=
rtol
,
atol
=
atol
,
verbose
=
True
)
np
.
testing
.
assert_allclose
(
actual
,
desired
,
rtol
=
rtol
,
atol
=
atol
,
verbose
=
True
)
def
check_numerical_grads
(
function
,
input_values
,
grad_values
,
function_value
=
None
,
delta
=
1e-3
,
atol
=
1e-2
,
rtol
=
0.1
):
"""A helper function that checks that numerical gradients of a function are
equal to gradients computed in some different way (analytical gradients).
Numerical gradients are computed using finite difference approximation. To
reduce the number of function evaluations, the number of points used is
gradually increased if the error value is too high (up to 5 points).
Parameters
----------
function
A function that takes inputs either as positional or as keyword
arguments (either `function(*input_values)` or `function(**input_values)`
should be correct) and returns a scalar result. Should accept numpy
ndarrays.
input_values : Dict[str, numpy.ndarray] or List[numpy.ndarray]
A list of values or a dict assigning values to variables. Represents the
point at which gradients should be computed.
grad_values : Dict[str, numpy.ndarray] or List[numpy.ndarray]
Gradients computed using a different method.
function_value : float, optional
Should be equal to `function(**input_values)`.
delta : float, optional
A small number used for numerical computation of partial derivatives.
The default 1e-3 is a good choice for float32.
atol : float, optional
Absolute tolerance. Gets multiplied by `sqrt(n)` where n is the size of a
gradient.
rtol : float, optional
Relative tolerance.
"""
# If input_values is a list then function accepts positional arguments
# In this case transform it to a function taking kwargs of the form {"0": ..., "1": ...}
if
not
isinstance
(
input_values
,
dict
):
input_len
=
len
(
input_values
)
input_values
=
{
str
(
idx
):
val
for
idx
,
val
in
enumerate
(
input_values
)}
def
_function
(
_input_len
=
input_len
,
_orig_function
=
function
,
**
kwargs
):
return
_orig_function
(
*
(
kwargs
[
str
(
i
)]
for
i
in
range
(
input_len
)))
function
=
_function
grad_values
=
{
str
(
idx
):
val
for
idx
,
val
in
enumerate
(
grad_values
)}
if
function_value
is
None
:
function_value
=
function
(
**
input_values
)
# a helper to modify j-th element of val by a_delta
def
modify
(
val
,
j
,
a_delta
):
val
=
val
.
copy
()
val
.
reshape
(
-
1
)[
j
]
=
val
.
reshape
(
-
1
)[
j
]
+
a_delta
return
val
# numerically compute a partial derivative with respect to j-th element of the var `name`
def
derivative
(
x_name
,
j
,
a_delta
):
modified_values
=
{
n
:
modify
(
val
,
j
,
a_delta
)
if
n
==
x_name
else
val
for
n
,
val
in
input_values
.
items
()}
return
(
function
(
**
modified_values
)
-
function_value
)
/
a_delta
def
compare_derivative
(
j
,
n_der
,
grad
):
der
=
grad
.
reshape
(
-
1
)[
j
]
return
np
.
abs
(
n_der
-
der
)
<
atol
+
rtol
*
np
.
abs
(
n_der
)
for
x_name
,
grad
in
grad_values
.
items
():
if
grad
.
shape
!=
input_values
[
x_name
]
.
shape
:
raise
AssertionError
(
"Gradient wrt '{}' has unexpected shape {}, expected {} "
.
format
(
x_name
,
grad
.
shape
,
input_values
[
x_name
]
.
shape
))
ngrad
=
np
.
zeros_like
(
grad
)
wrong_positions
=
[]
# compute partial derivatives for each position in this variable
for
j
in
range
(
np
.
prod
(
grad
.
shape
)):
# forward difference approximation
nder
=
derivative
(
x_name
,
j
,
delta
)
# if the derivative is not equal to the analytical one, try to use more
# precise and expensive methods
if
not
compare_derivative
(
j
,
nder
,
grad
):
# central difference approximation
nder
=
(
derivative
(
x_name
,
j
,
-
delta
)
+
nder
)
/
2
if
not
compare_derivative
(
j
,
nder
,
grad
):
# central difference approximation using h = delta/2
cnder2
=
(
derivative
(
x_name
,
j
,
delta
/
2
)
+
derivative
(
x_name
,
j
,
-
delta
/
2
))
/
2
# five-point derivative
nder
=
(
4
*
cnder2
-
nder
)
/
3
# if the derivatives still don't match, add this position to the
# list of wrong positions
if
not
compare_derivative
(
j
,
nder
,
grad
):
wrong_positions
.
append
(
np
.
unravel_index
(
j
,
grad
.
shape
))
ngrad
.
reshape
(
-
1
)[
j
]
=
nder
wrong_percentage
=
int
(
100
*
len
(
wrong_positions
)
/
np
.
prod
(
grad
.
shape
))
dist
=
np
.
sqrt
(
np
.
sum
((
ngrad
-
grad
)
**
2
))
grad_norm
=
np
.
sqrt
(
np
.
sum
(
ngrad
**
2
))
if
not
(
np
.
isfinite
(
dist
)
and
np
.
isfinite
(
grad_norm
)):
raise
ValueError
(
"NaN or infinity detected during numerical gradient checking wrt '{}'
\n
"
"analytical grad = {}
\n
numerical grad = {}
\n
"
.
format
(
x_name
,
grad
,
ngrad
))
# we multiply atol by this number to make it more universal for different sizes
sqrt_n
=
np
.
sqrt
(
float
(
np
.
prod
(
grad
.
shape
)))
if
dist
>
atol
*
sqrt_n
+
rtol
*
grad_norm
:
raise
AssertionError
(
"Analytical and numerical grads wrt '{}' differ too much
\n
"
"analytical grad = {}
\n
numerical grad = {}
\n
"
"{}
%
of elements differ, first 10 of wrong positions: {}
\n
"
"distance > atol*sqrt(n) + rtol*grad_norm
\n
"
"distance {} > {}*{} + {}*{}"
.
format
(
x_name
,
grad
,
ngrad
,
wrong_percentage
,
wrong_positions
[:
10
],
dist
,
atol
,
sqrt_n
,
rtol
,
grad_norm
))
max_diff
=
np
.
max
(
np
.
abs
(
ngrad
-
grad
))
avg_diff
=
np
.
mean
(
np
.
abs
(
ngrad
-
grad
))
logging
.
info
(
"Numerical grad test wrt '
%
s' of shape
%
s passes, "
"dist =
%
f, max_diff =
%
f, avg_diff =
%
f"
,
x_name
,
grad
.
shape
,
dist
,
max_diff
,
avg_diff
)
tests/python/unittest/test_testing.py
0 → 100644
View file @
10b6e7e0
import
numpy
as
np
import
tvm
from
tvm.testing
import
check_numerical_grads
def
test_check_numerical_grads
():
# Functions and their derivatives
functions
=
[
lambda
x
:
(
x
*
x
*
x
,
3
*
x
*
x
),
lambda
x
:
(
x
*
x
,
2
*
x
),
lambda
x
:
(
np
.
abs
(
x
),
np
.
sign
(
x
)),
lambda
x
:
(
np
.
log
(
np
.
abs
(
x
)),
1
/
x
),
lambda
x
:
(
np
.
sqrt
(
np
.
abs
(
x
)),
np
.
sign
(
x
)
/
(
2
*
np
.
sqrt
(
np
.
abs
(
x
)))),
lambda
x
:
(
1
/
x
,
-
1
/
(
x
*
x
)),
lambda
x
:
(
np
.
sign
(
np
.
sin
(
1
/
x
)),
np
.
zeros_like
(
x
)),
lambda
x
:
(
x
*
np
.
sin
(
1
/
x
),
np
.
sin
(
1
/
x
)
-
np
.
cos
(
1
/
x
)
/
x
),
lambda
x
:
(
np
.
sin
(
1
/
x
),
-
np
.
cos
(
1
/
x
)
/
(
x
*
x
)),
]
# Avoid values too close to 0 since singularities of our functions are there
min_x
=
0.5
for
func
in
functions
:
x_input
=
np
.
random
.
uniform
(
min_x
,
10
,
size
=
(
3
,
4
))
# We need a function returning a scalar, so sum the results
func_forw
=
lambda
x
:
np
.
sum
(
func
(
x
)[
0
])
grads
=
[
func
(
x_input
)[
1
]]
check_numerical_grads
(
func_forw
,
[
x_input
],
grads
)
# Check functions with multiple arguments
for
f1
in
functions
:
for
f2
in
functions
:
x_input
=
np
.
random
.
uniform
(
min_x
,
10
,
size
=
(
3
,
4
))
y_input
=
np
.
random
.
uniform
(
min_x
,
10
,
size
=
(
3
,
4
))
func_forw
=
lambda
x
,
y
:
np
.
sum
(
f1
(
x
)[
0
]
+
f2
(
y
)[
0
])
grads
=
[
f1
(
x_input
)[
1
],
f2
(
y_input
)[
1
]]
check_numerical_grads
(
func_forw
,
[
x_input
,
y_input
],
grads
)
# Same thing but with keyword arguments
func_forw
=
lambda
x
,
y
:
np
.
sum
(
f1
(
x
)[
0
]
+
f2
(
y
)[
0
])
grads
=
{
'x'
:
f1
(
x_input
)[
1
],
'y'
:
f2
(
y_input
)[
1
]}
check_numerical_grads
(
func_forw
,
{
'x'
:
x_input
,
'y'
:
y_input
},
grads
)
def
_noise1
(
x
,
atol
=
1e-2
,
rtol
=
0.1
):
# We go in random direction using twice the original tolerance to be sure this
# results in an error
sqrt_n
=
np
.
sqrt
(
float
(
np
.
prod
(
x
.
shape
)))
tol
=
2
*
(
np
.
linalg
.
norm
(
x
)
*
rtol
+
atol
*
sqrt_n
)
noise
=
np
.
random
.
normal
(
size
=
x
.
shape
)
noise
=
tol
*
noise
/
np
.
linalg
.
norm
(
noise
)
return
x
+
noise
def
_noise2
(
x
,
atol
=
1e-2
,
rtol
=
0.1
):
# This noise affects just a single component
sqrt_n
=
np
.
sqrt
(
float
(
np
.
prod
(
x
.
shape
)))
tol
=
2
*
(
np
.
linalg
.
norm
(
x
)
*
rtol
+
atol
*
sqrt_n
)
n
=
np
.
random
.
randint
(
np
.
prod
(
x
.
shape
))
noise
=
np
.
zeros_like
(
x
)
noise
.
reshape
(
-
1
)[
n
]
=
tol
return
x
+
noise
# Add noise to gradients and check that the function throws
for
f1
in
functions
:
for
f2
in
functions
:
x_input
=
np
.
random
.
uniform
(
min_x
,
10
,
size
=
(
3
,
4
))
y_input
=
np
.
random
.
uniform
(
min_x
,
10
,
size
=
(
3
,
4
))
func_forw
=
lambda
x
,
y
:
np
.
sum
(
f1
(
x
)[
0
]
+
f2
(
y
)[
0
])
grads
=
[
_noise1
(
f1
(
x_input
)[
1
]),
_noise1
(
f2
(
y_input
)[
1
])]
try
:
check_numerical_grads
(
func_forw
,
[
x_input
,
y_input
],
grads
)
except
AssertionError
as
e
:
pass
else
:
raise
AssertionError
(
"check_numerical_grads didn't raise an exception"
)
func_forw
=
lambda
x
,
y
:
np
.
sum
(
f1
(
x
)[
0
]
+
f2
(
y
)[
0
])
grads
=
{
'x'
:
_noise2
(
f1
(
x_input
)[
1
]),
'y'
:
_noise2
(
f2
(
y_input
)[
1
])}
try
:
check_numerical_grads
(
func_forw
,
{
'x'
:
x_input
,
'y'
:
y_input
},
grads
)
except
AssertionError
as
e
:
pass
else
:
raise
AssertionError
(
"check_numerical_grads didn't raise an exception"
)
if
__name__
==
"__main__"
:
test_check_numerical_grads
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment