Unverified Commit 09c55fd1 by Hua Jiang Committed by GitHub

[VTA] YoloV3 Support (#4887)

* [VTA] YoloV3 Support

Issue:
YoloV3 use some operator and logic that not get good support by
existing vta logic, like nn.pad, upsample, and 255 output channel.

Solution:
add related logic to let darknet YoloV3 can running on VTA

* Fix small(0, or 1 heigh/width) detect frame issue.

* add yolov3-tiny turtorial

* add os import

* address review comments.

* rename tutorial file with a short name.

* rename deploy_vision_on_vta.py into deploy_classification.py.

* address review comment, fix plint eror in deploy_detection.py
parent 8e7e7792
......@@ -31,6 +31,8 @@ def run_opt_pass(expr, opt_pass):
return entry if isinstance(expr, relay.Function) else entry.body
def _to_shape(shape):
""" convert shape into tuple.
"""
return tuple(int(sh) for sh in shape)
def _pack_batch_channel(data, dshape, bfactor, cfactor):
......@@ -55,6 +57,49 @@ def _unpack_batch_channel(data, old_shape):
return data
def _const_shape_match(data, dshape, cfactor_out):
""" Pad the constant if the shape[0] not divisible by cfactor_out.
"""
assert len(dshape) == 3
pad_width = int(dshape[0]) % cfactor_out
if pad_width != 0:
pad_width = cfactor_out -pad_width
data = op.nn.pad(data, [[0, pad_width], [0, 0], [0, 0]])
dshape = tuple([dshape[0] + pad_width, dshape[1], dshape[2]])
return data, dshape
def _weight_shape_match(data, dshape, channels, cfactor_out, transpose=False):
""" Pad the weight if the shape[0] not divisible by cfactor_out.
"""
assert len(dshape) == 4
pad_width = int(dshape[0]) % cfactor_out
channels_pad = int(channels) % cfactor_out
if pad_width != 0:
pad_width = cfactor_out - pad_width
data = op.nn.pad(data, [[0, pad_width], [0, 0], [0, 0], [0, 0]])
dshape = tuple([dshape[0] + pad_width, dshape[1], dshape[2], dshape[3]])
if channels_pad != 0:
channels = channels + (cfactor_out - channels_pad)
return data, dshape, channels
def _weight_shape_match_transpose(data, dshape, channels, cfactor_out):
""" Pad the weight if the shape[1] not divisible by cfactor_out.
"""
assert len(dshape) == 4
pad_width = int(dshape[1]) % cfactor_out
channels_pad = int(channels) % cfactor_out
if pad_width != 0:
pad_width = cfactor_out - pad_width
data = op.nn.pad(data, [[0, 0], [0, pad_width], [0, 0], [0, 0]])
dshape = tuple(dshape[0], [dshape[1] + pad_width, dshape[2], dshape[3]])
if channels_pad != 0:
channels = channels + (cfactor_out - channels_pad)
return data, dshape, channels
def _pack_weight(data, dshape, cfactor):
"""Pack the weight into packed format.
"""
......@@ -106,10 +151,19 @@ def _pack_const(data, dshape, dtype, bfactor, cfactor):
return data
def _get_shape(node):
"""Get the shape of a node.
def _get_tensor_shape(node):
"""Get node shape.
"""
return _to_shape(node.checked_type.shape)
if isinstance(node.checked_type, relay.ty.TensorType):
return _to_shape(node.checked_type.shape)
return []
def _get_tensor_type(node):
"""Get node type.
"""
if isinstance(node.checked_type, relay.ty.TensorType):
return node.checked_type.dtype
return "float32"
def _operator_idx_inc(expr, count_meta, operator_current_idx):
"""Increase operator index
......@@ -136,14 +190,17 @@ class ExprPack(ExprMutator):
self.add = op.op.get("add")
self.multiply = op.op.get("multiply")
self.bias_add = op.op.get("nn.bias_add")
self.pad = op.op.get("nn.pad")
self.upsampling = op.op.get("nn.upsampling")
self.reshape = op.op.get("reshape")
self.number_of_conv2d = 0
super().__init__()
def visit_call(self, call):
""" Visit the children. """
# First visit the children.
oshape = _get_shape(call)
odtype = call.checked_type.dtype
oshape = _get_tensor_shape(call)
odtype = _get_tensor_type(call)
input_types = [arg.checked_type for arg in call.args]
args = [self.visit(arg) for arg in call.args]
......@@ -156,7 +213,7 @@ class ExprPack(ExprMutator):
if self.start_pack:
self.start_pack = False
data = args[0]
data_shape = _get_shape(call.args[0])
data_shape = _get_tensor_shape(call.args[0])
return _unpack_batch_channel(data, data_shape)
if self.start_pack:
# Operator cases
......@@ -169,11 +226,17 @@ class ExprPack(ExprMutator):
data, weight = args
data_shape = _to_shape(input_types[0].shape)
kernel_shape = _to_shape(input_types[1].shape)
channels = call.attrs.channels
weight, kernel_shape, channels = _weight_shape_match(weight,
kernel_shape,
channels,
self.cfactor)
kernel = _pack_weight(weight, kernel_shape, self.cfactor)
# insert bit packing when necessary
if w_lanes != 1:
assert 8 % w_lanes == 0
kernel = op.bitpack(kernel, lanes=w_lanes)
conv2d = op.nn.conv2d(
data,
kernel,
......@@ -181,7 +244,7 @@ class ExprPack(ExprMutator):
padding=call.attrs.padding,
dilation=call.attrs.dilation,
groups=call.attrs.groups,
channels=call.attrs.channels,
channels=channels,
kernel_size=call.attrs.kernel_size,
data_layout=data_layout,
kernel_layout=kernel_layout,
......@@ -198,6 +261,11 @@ class ExprPack(ExprMutator):
data, weight = args
data_shape = _to_shape(input_types[0].shape)
kernel_shape = _to_shape(input_types[1].shape)
channels = call.attrs.channels
weight, kernel_shape, channels = _weight_shape_match_transpose(weight,
kernel_shape,
channels,
self.cfactor)
kernel = _pack_weight_conv2d_transpose(weight, kernel_shape, self.cfactor)
conv2d = op.nn.conv2d_transpose(
data,
......@@ -218,8 +286,11 @@ class ExprPack(ExprMutator):
pass
elif call.op == self.add and len(input_types[1].shape) == 3:
data, const = args
const, input_shape = _const_shape_match(const,
input_types[1].shape,
self.cfactor)
const = _pack_const(const,
_to_shape(input_types[1].shape),
_to_shape(input_shape),
input_types[1].dtype,
self.bfactor,
self.cfactor)
......@@ -247,6 +318,36 @@ class ExprPack(ExprMutator):
input_types[0].dtype == 'int32':
cast = relay.Call(op.op.get('cast'), [args[0]], call.attrs)
return relay.Call(op.op.get('copy'), [cast])
elif call.op == self.pad:
pad_width = call.attrs.pad_width
if len(pad_width) == 6:
pass
elif len(pad_width) == 4:
data, = args
new_pad_width = []
new_pad_width.extend(pad_width)
for _ in range(2):
new_pad_width.append([0, 0])
return op.nn.pad(data,
pad_value=call.attrs.pad_value,
pad_width=new_pad_width)
elif call.op == self.upsampling:
data, = args
scale_h = call.attrs.scale_h
scale_w = call.attrs.scale_w
data_layout = "NCHW%dn%dc" % (self.bfactor, self.cfactor)
method = call.attrs.method
align_corners = call.attrs.align_corners
return op.nn.upsampling(data,
scale_h,
scale_w,
data_layout,
method,
align_corners)
elif call.op == self.reshape and len(input_types[0].shape) == 4:
data, = args
data = op.transpose(data, axes=(0, 4, 1, 5, 2, 3))
return op.reshape(data, input_types[0].shape)
return relay.Call(
self.visit(call.op),
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment