Commit 083a4184 by Yuwei Hu Committed by Tianqi Chen

keras frontend tutorial (#278)

* keras frontend tutorial

* fix
parent e6319f62
...@@ -3,5 +3,10 @@ nnvm.frontend ...@@ -3,5 +3,10 @@ nnvm.frontend
.. automodule:: nnvm.frontend .. automodule:: nnvm.frontend
.. autofunction:: nnvm.frontend.from_mxnet .. autofunction:: nnvm.frontend.from_mxnet
.. autofunction:: nnvm.frontend.from_onnx
.. autofunction:: nnvm.frontend.from_coreml
.. autofunction:: nnvm.frontend.from_keras
...@@ -293,12 +293,6 @@ def from_coreml(model): ...@@ -293,12 +293,6 @@ def from_coreml(model):
model: model:
coremltools.models.MLModel of a NeuralNetworkClassifier coremltools.models.MLModel of a NeuralNetworkClassifier
arg_params : dict of str to mx.NDArray
The argument parameters in mxnet
aux_params : dict of str to mx.NDArray
The auxiliary parameters in mxnet
Returns Returns
------- -------
sym : nnvm.Symbol sym : nnvm.Symbol
......
...@@ -393,7 +393,7 @@ class GraphProto(object): ...@@ -393,7 +393,7 @@ class GraphProto(object):
def from_onnx(graph): def from_onnx(graph):
"""Load onnx graph which is a python protobuf object in to nnvm graph. """Load onnx graph which is a python protobuf object into nnvm graph.
The companion parameters will be handled automatically. The companion parameters will be handled automatically.
The inputs from onnx graph is vague, only providing "1", "2"... The inputs from onnx graph is vague, only providing "1", "2"...
For convenience, we rename the `real` input names to "input_0", For convenience, we rename the `real` input names to "input_0",
......
...@@ -266,9 +266,9 @@ inline bool PadInferShape(const nnvm::NodeAttrs& attrs, ...@@ -266,9 +266,9 @@ inline bool PadInferShape(const nnvm::NodeAttrs& attrs,
TShape dshape = (*in_shape)[0]; TShape dshape = (*in_shape)[0];
if (dshape.ndim() == 0) return false; if (dshape.ndim() == 0) return false;
CHECK_EQ(param.pad_width.ndim(), dshape.ndim()); CHECK_EQ(param.pad_width.ndim(), dshape.ndim());
CHECK_EQ(param.pad_width[0].ndim(), 2U);
TShape oshape = dshape; TShape oshape = dshape;
for (uint32_t i = 0; i < dshape.ndim(); i++) { for (uint32_t i = 0; i < dshape.ndim(); i++) {
CHECK_EQ(param.pad_width[i].ndim(), 2U);
int pad_before = param.pad_width[i][0]; int pad_before = param.pad_width[i][0];
int pad_after = param.pad_width[i][1]; int pad_after = param.pad_width[i][1];
oshape[i] = dshape[i] + pad_before + pad_after; oshape[i] = dshape[i] + pad_before + pad_after;
......
...@@ -38,6 +38,9 @@ RUN bash /install/ubuntu_install_onnx.sh ...@@ -38,6 +38,9 @@ RUN bash /install/ubuntu_install_onnx.sh
COPY install/ubuntu_install_coreml.sh /install/ubuntu_install_coreml.sh COPY install/ubuntu_install_coreml.sh /install/ubuntu_install_coreml.sh
RUN bash /install/ubuntu_install_coreml.sh RUN bash /install/ubuntu_install_coreml.sh
COPY install/ubuntu_install_keras.sh /install/ubuntu_install_keras.sh
RUN bash /install/ubuntu_install_keras.sh
RUN pip install Pillow RUN pip install Pillow
# Environment variables # Environment variables
......
"""
Compile Keras Models
=====================
**Author**: `Yuwei Hu <https://Huyuwei.github.io/>`_
This article is an introductory tutorial to deploy keras models with NNVM.
For us to begin with, keras should be installed.
Tensorflow is also required since it's used as the default backend of keras.
A quick solution is to install via pip
```
pip install -U keras --user
```
```
pip install -U tensorflow --user
```
or please refer to official site
https://keras.io/#installation
"""
import nnvm
import tvm
import keras
import numpy as np
def download(url, path, overwrite=False):
import os
if os.path.isfile(path) and not overwrite:
print('File {} exists, skip.'.format(path))
return
print('Downloading from url {} to {}'.format(url, path))
try:
import urllib.request
urllib.request.urlretrieve(url, path)
except:
import urllib
urllib.urlretrieve(url, path)
######################################################################
# Load pretrained keras model
# ----------------------------
# We load a pretrained resnet-50 classification model provided by keras.
weights_url = ''.join(['https://github.com/fchollet/deep-learning-models/releases/',
'download/v0.2/resnet50_weights_tf_dim_ordering_tf_kernels.h5'])
weights_file = 'resnet50_weights.h5'
download(weights_url, weights_file)
keras_resnet50 = keras.applications.resnet50.ResNet50(include_top=True, weights=None,
input_shape=(224,224,3), classes=1000)
keras_resnet50.load_weights('resnet50_weights.h5')
######################################################################
# Load a test image
# ------------------
# A single cat dominates the examples!
from PIL import Image
from matplotlib import pyplot as plt
from keras.applications.resnet50 import preprocess_input
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
download(img_url, 'cat.jpg')
img = Image.open('cat.jpg').resize((224, 224))
plt.imshow(img)
plt.show()
# input preprocess
data = np.array(img)[np.newaxis, :].astype('float32')
data = preprocess_input(data).transpose([0, 3, 1, 2])
print('data', data.shape)
######################################################################
# Compile the model on NNVM
# --------------------------
# We should be familiar with the process now.
# convert the keras model(NHWC layout) to NNVM format(NCHW layout).
sym, params = nnvm.frontend.from_keras(keras_resnet50)
# compile the model
target = 'cuda'
shape_dict = {'data': data.shape}
with nnvm.compiler.build_config(opt_level=2):
graph, lib, params = nnvm.compiler.build(sym, target, shape_dict, params=params)
######################################################################
# Execute on TVM
# ---------------
# The process is no different from other examples.
from tvm.contrib import graph_runtime
ctx = tvm.gpu(0)
m = graph_runtime.create(graph, lib, ctx)
# set inputs
m.set_input('data', tvm.nd.array(data.astype('float32')))
m.set_input(**params)
# execute
m.run()
# get outputs
out_shape = (1000,)
tvm_out = m.get_output(0, tvm.nd.empty(out_shape, 'float32')).asnumpy()
top1_tvm = np.argmax(tvm_out)
#####################################################################
# Look up synset name
# -------------------
# Look up prdiction top 1 index in 1000 class synset.
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
'4d0b62f3d01426887599d4f7ede23ee5/raw/',
'596b27d23537e5a1b5751d2b0481ef172f58b539/',
'imagenet1000_clsid_to_human.txt'])
synset_name = 'synset.txt'
download(synset_url, synset_name)
with open(synset_name) as f:
synset = eval(f.read())
print('NNVM top-1 id: {}, class name: {}'.format(top1_tvm, synset[top1_tvm]))
# confirm correctness with keras output
keras_out = keras_resnet50.predict(data.transpose([0, 2, 3, 1]))
top1_keras = np.argmax(keras_out)
print('Keras top-1 id: {}, class name: {}'.format(top1_keras, synset[top1_keras]))
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment