Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
0555a03f
Commit
0555a03f
authored
Feb 22, 2019
by
ziheng
Committed by
Tianqi Chen
Feb 22, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[RELAY/OP] Gradient of relay level1 ops (#2633)
parent
76812dea
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
168 additions
and
27 deletions
+168
-27
python/tvm/relay/expr.py
+3
-0
python/tvm/relay/op/__init__.py
+1
-0
python/tvm/relay/op/_tensor.py
+0
-18
python/tvm/relay/op/_tensor_grad.py
+79
-0
python/tvm/relay/op/op.py
+1
-1
tests/python/relay/test_op_grad_level1.py
+76
-0
tests/python/relay/test_op_level1.py
+8
-8
No files found.
python/tvm/relay/expr.py
View file @
0555a03f
...
@@ -51,6 +51,9 @@ class Expr(RelayNode):
...
@@ -51,6 +51,9 @@ class Expr(RelayNode):
"""
"""
return
_make
.
cast
(
self
,
dtype
)
return
_make
.
cast
(
self
,
dtype
)
def
__neg__
(
self
):
return
_op_make
.
negative
(
self
)
def
__add__
(
self
,
other
):
def
__add__
(
self
,
other
):
if
isinstance
(
other
,
Expr
):
if
isinstance
(
other
,
Expr
):
return
_op_make
.
add
(
self
,
other
)
return
_op_make
.
add
(
self
,
other
)
...
...
python/tvm/relay/op/__init__.py
View file @
0555a03f
...
@@ -18,6 +18,7 @@ from . import op_attrs
...
@@ -18,6 +18,7 @@ from . import op_attrs
# operator registry
# operator registry
from
.
import
_tensor
from
.
import
_tensor
from
.
import
_tensor_grad
from
.
import
_transform
from
.
import
_transform
from
.
import
_reduce
from
.
import
_reduce
from
..expr
import
Expr
from
..expr
import
Expr
...
...
python/tvm/relay/op/_tensor.py
View file @
0555a03f
...
@@ -3,25 +3,7 @@
...
@@ -3,25 +3,7 @@
from
__future__
import
absolute_import
from
__future__
import
absolute_import
import
topi
import
topi
from
.op
import
register_compute
,
register_schedule
,
register_pattern
from
.op
import
register_compute
,
register_schedule
,
register_pattern
from
.op
import
register_gradient
from
.op
import
schedule_injective
,
OpPattern
from
.op
import
schedule_injective
,
OpPattern
from
.transform
import
collapse_sum_like
from
.tensor
import
negative
def
add_grad
(
orig
,
grad
):
return
[
collapse_sum_like
(
grad
,
orig
.
args
[
0
]),
collapse_sum_like
(
grad
,
orig
.
args
[
1
])]
register_gradient
(
"add"
,
add_grad
)
def
subtract_grad
(
orig
,
grad
):
return
[
collapse_sum_like
(
grad
,
orig
.
args
[
0
]),
collapse_sum_like
(
negative
(
grad
),
orig
.
args
[
1
])]
register_gradient
(
"subtract"
,
subtract_grad
)
schedule_broadcast
=
schedule_injective
schedule_broadcast
=
schedule_injective
schedule_elemwise
=
schedule_injective
schedule_elemwise
=
schedule_injective
...
...
python/tvm/relay/op/_tensor_grad.py
0 → 100644
View file @
0555a03f
#pylint: disable=invalid-name, unused-argument
"""Backend compiler related feature registration"""
from
__future__
import
absolute_import
from
..expr
import
const
from
.op
import
register_gradient
from
.transform
import
collapse_sum_like
,
where
from
.tensor
import
exp
,
negative
,
power
,
less
from
.tensor
import
zeros_like
,
ones_like
@register_gradient
(
"log"
)
def
log_grad
(
orig
,
grad
):
"""Returns [grad * (1 / x)]"""
x
=
orig
.
args
[
0
]
return
[
grad
*
ones_like
(
x
)
/
x
]
@register_gradient
(
"exp"
)
def
exp_grad
(
orig
,
grad
):
"""Returns [grad * exp(x)]"""
return
[
grad
*
exp
(
orig
.
args
[
0
])]
@register_gradient
(
"sqrt"
)
def
sqrt_grad
(
orig
,
grad
):
"""Returns [grad * 0.5 * (x ^ -0.5)]"""
a
=
const
(
0.5
)
# (TODO) type?
return
[
grad
*
a
*
power
(
orig
.
args
[
0
],
negative
(
a
))]
@register_gradient
(
"sigmoid"
)
def
sigmoid_grad
(
orig
,
grad
):
"""Returns [grad * sigmoid(x) * (1 - sigmoid(x))]."""
return
[
grad
*
orig
*
(
ones_like
(
orig
)
-
orig
)]
@register_gradient
(
"tanh"
)
def
tanh_grad
(
orig
,
grad
):
"""Returns grad * (1 - tanh(x) * tanh(x))."""
return
[
grad
*
ones_like
(
orig
)
-
orig
*
orig
]
@register_gradient
(
"nn.relu"
)
def
relu_grad
(
orig
,
grad
):
"""Returns grad * (select(x < 0, 0, 1))."""
x
=
orig
.
args
[
0
]
zeros
=
zeros_like
(
x
)
ones
=
ones_like
(
x
)
return
[
where
(
less
(
x
,
zeros
),
zeros
,
ones
*
grad
)]
@register_gradient
(
"add"
)
def
add_grad
(
orig
,
grad
):
"""Returns [grad, grad]"""
return
[
collapse_sum_like
(
grad
,
orig
.
args
[
0
]),
collapse_sum_like
(
grad
,
orig
.
args
[
1
])]
@register_gradient
(
"subtract"
)
def
subtract_grad
(
orig
,
grad
):
"""Returns [grad, -grad]"""
return
[
collapse_sum_like
(
grad
,
orig
.
args
[
0
]),
collapse_sum_like
(
negative
(
grad
),
orig
.
args
[
1
])]
@register_gradient
(
"multiply"
)
def
multiply_grad
(
orig
,
grad
):
"""Returns [grad * y, grad * x]"""
x
,
y
=
orig
.
args
return
[
collapse_sum_like
(
grad
*
y
,
x
),
collapse_sum_like
(
grad
*
x
,
y
)]
@register_gradient
(
"divide"
)
def
divide_grad
(
orig
,
grad
):
"""Returns [grad / y, - grad * (x / y) / y]"""
x
,
y
=
orig
.
args
return
[
collapse_sum_like
(
grad
/
y
,
x
),
collapse_sum_like
(
-
(
grad
*
orig
/
y
),
y
)]
python/tvm/relay/op/op.py
View file @
0555a03f
...
@@ -168,7 +168,7 @@ def register_pattern(op_name, pattern, level=10):
...
@@ -168,7 +168,7 @@ def register_pattern(op_name, pattern, level=10):
"""
"""
return
register
(
op_name
,
"TOpPattern"
,
pattern
,
level
)
return
register
(
op_name
,
"TOpPattern"
,
pattern
,
level
)
def
register_gradient
(
op_name
,
fgradient
,
level
=
10
):
def
register_gradient
(
op_name
,
fgradient
=
None
,
level
=
10
):
"""Register operator pattern for an op.
"""Register operator pattern for an op.
Parameters
Parameters
...
...
tests/python/relay/test_op_grad_level1.py
0 → 100644
View file @
0555a03f
import
tvm
import
numpy
as
np
from
tvm
import
relay
from
tvm.relay.ir_pass
import
gradient
,
infer_type
from
tvm.relay.testing
import
ctx_list
def
sigmoid
(
x
):
one
=
np
.
ones_like
(
x
)
return
one
/
(
one
+
np
.
exp
(
-
x
))
def
relu
(
x
):
x_copy
=
np
.
copy
(
x
)
np
.
maximum
(
x_copy
,
0
,
x_copy
)
return
x_copy
def
test_unary_op
():
def
check_single_op
(
opfunc
,
ref
):
shape
=
(
10
,
4
)
dtype
=
'float32'
tp
=
relay
.
TensorType
(
shape
,
dtype
)
x
=
relay
.
var
(
"x"
,
tp
)
y
=
opfunc
(
x
)
if
ref
is
not
None
:
data
=
np
.
random
.
rand
(
*
shape
)
.
astype
(
dtype
)
ref_grad
=
ref
(
data
)
fwd_func
=
relay
.
Function
([
x
],
y
)
bwd_func
=
infer_type
(
gradient
(
fwd_func
))
for
target
,
ctx
in
ctx_list
():
intrp
=
relay
.
create_executor
(
ctx
=
ctx
,
target
=
target
)
op_res
,
(
op_grad
,
)
=
intrp
.
evaluate
(
bwd_func
)(
data
)
np
.
testing
.
assert_allclose
(
op_grad
.
asnumpy
(),
ref_grad
,
rtol
=
0.01
)
for
opfunc
,
ref
in
[(
tvm
.
relay
.
log
,
lambda
x
:
1
/
x
),
(
tvm
.
relay
.
exp
,
np
.
exp
),
(
tvm
.
relay
.
sigmoid
,
lambda
x
:
sigmoid
(
x
)
*
(
1
-
sigmoid
(
x
))),
(
tvm
.
relay
.
tanh
,
lambda
x
:
1
-
np
.
tanh
(
x
)
*
np
.
tanh
(
x
)),
(
tvm
.
relay
.
sqrt
,
lambda
x
:
0.5
*
np
.
power
(
x
,
-
0.5
)),
(
relay
.
nn
.
relu
,
lambda
x
:
np
.
where
(
x
<
0
,
np
.
zeros_like
(
x
),
np
.
ones_like
(
x
)))]:
check_single_op
(
opfunc
,
ref
)
def
test_binary_op
():
def
inst
(
vars
,
sh
):
return
[
vars
.
get
(
s
,
s
)
for
s
in
sh
]
def
check_binary_op
(
opfunc
,
ref
):
s
=
(
5
,
10
,
5
)
t
=
relay
.
TensorType
((
5
,
10
,
5
))
x
=
relay
.
var
(
"x"
,
t
)
y
=
relay
.
var
(
"y"
,
t
)
z
=
opfunc
(
x
,
y
)
x_data
=
np
.
random
.
rand
(
*
s
)
.
astype
(
t
.
dtype
)
y_data
=
np
.
random
.
rand
(
*
s
)
.
astype
(
t
.
dtype
)
ref_grad0
,
ref_grad1
=
ref
(
x_data
,
y_data
)
fwd_func
=
relay
.
Function
([
x
,
y
],
z
)
bwd_func
=
infer_type
(
gradient
(
fwd_func
))
for
target
,
ctx
in
ctx_list
():
intrp
=
relay
.
create_executor
(
ctx
=
ctx
,
target
=
target
)
op_res
,
(
op_grad0
,
op_grad1
)
=
intrp
.
evaluate
(
bwd_func
)(
x_data
,
y_data
)
np
.
testing
.
assert_allclose
(
op_grad0
.
asnumpy
(),
ref_grad0
,
rtol
=
0.01
)
np
.
testing
.
assert_allclose
(
op_grad1
.
asnumpy
(),
ref_grad1
,
rtol
=
0.01
)
for
opfunc
,
ref
in
[(
relay
.
add
,
lambda
x
,
y
:
[
np
.
ones_like
(
x
),
np
.
ones_like
(
y
)]),
(
relay
.
subtract
,
lambda
x
,
y
:
[
np
.
ones_like
(
x
),
-
np
.
ones_like
(
y
)]),
(
relay
.
multiply
,
lambda
x
,
y
:
[
y
,
x
]),
(
relay
.
divide
,
lambda
x
,
y
:
[
1
/
y
,
-
x
/
(
y
**
2
)])]:
check_binary_op
(
opfunc
,
ref
)
if
__name__
==
"__main__"
:
test_unary_op
()
test_binary_op
()
tests/python/relay/test_op_level1.py
View file @
0555a03f
...
@@ -39,11 +39,11 @@ def test_unary_op():
...
@@ -39,11 +39,11 @@ def test_unary_op():
for
opfunc
,
ref
in
[(
tvm
.
relay
.
log
,
np
.
log
),
for
opfunc
,
ref
in
[(
tvm
.
relay
.
log
,
np
.
log
),
(
tvm
.
relay
.
exp
,
np
.
exp
),
(
tvm
.
relay
.
exp
,
np
.
exp
),
(
tvm
.
relay
.
sqrt
,
np
.
sqrt
),
(
tvm
.
relay
.
sqrt
,
np
.
sqrt
),
(
tvm
.
relay
.
sigmoid
,
sigmoid
),
(
tvm
.
relay
.
sigmoid
,
sigmoid
),
(
tvm
.
relay
.
tanh
,
np
.
tanh
),
(
tvm
.
relay
.
tanh
,
np
.
tanh
),
(
relay
.
nn
.
relu
,
relu
)]:
(
relay
.
nn
.
relu
,
relu
)]:
check_single_op
(
opfunc
,
ref
)
check_single_op
(
opfunc
,
ref
)
...
@@ -84,9 +84,9 @@ def test_binary_op():
...
@@ -84,9 +84,9 @@ def test_binary_op():
np
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
,
rtol
=
0.01
)
np
.
testing
.
assert_allclose
(
op_res
.
asnumpy
(),
ref_res
,
rtol
=
0.01
)
for
opfunc
,
ref
in
[(
relay
.
add
,
np
.
add
),
for
opfunc
,
ref
in
[(
relay
.
add
,
np
.
add
),
(
relay
.
subtract
,
np
.
subtract
),
(
relay
.
subtract
,
np
.
subtract
),
(
relay
.
multiply
,
np
.
multiply
),
(
relay
.
multiply
,
np
.
multiply
),
(
relay
.
divide
,
np
.
divide
)]:
(
relay
.
divide
,
np
.
divide
)]:
check_binary_op
(
opfunc
,
ref
)
check_binary_op
(
opfunc
,
ref
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment