Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
050f2bde
Unverified
Commit
050f2bde
authored
Mar 21, 2020
by
Samuel
Committed by
GitHub
Mar 21, 2020
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[KERAS] conv3d frontend operator support (#5080)
* [KERAS]Conv3d support added * Keras conv3d testcase added
parent
36a83c7f
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
106 additions
and
6 deletions
+106
-6
python/tvm/relay/frontend/keras.py
+83
-6
tests/python/frontend/keras/test_forward.py
+23
-0
No files found.
python/tvm/relay/frontend/keras.py
View file @
050f2bde
...
...
@@ -320,6 +320,75 @@ def _convert_convolution(inexpr, keras_layer, etab):
out
=
_convert_activation
(
out
,
act_type
,
etab
)
return
out
def
_convert_convolution3d
(
inexpr
,
keras_layer
,
etab
):
_check_data_format
(
keras_layer
)
weightList
=
keras_layer
.
get_weights
()
weight
=
weightList
[
0
]
if
etab
.
data_layout
==
'NDHWC'
:
kernel_layout
=
'DHWIO'
else
:
kernel_layout
=
'OIDHW'
msg
=
'Kernel layout with {} is not supported for operator Convolution3D '
\
'in frontend Keras.'
raise
tvm
.
error
.
OpAttributeUnImplemented
(
msg
.
format
(
etab
.
data_layout
))
dilation_rate
=
keras_layer
.
dilation_rate
if
isinstance
(
dilation_rate
,
(
list
,
tuple
)):
dilation
=
[
dilation_rate
[
0
],
dilation_rate
[
1
],
dilation_rate
[
2
]]
else
:
dilation
=
[
dilation_rate
,
dilation_rate
,
dilation_rate
]
kernel_d1
=
weight
.
shape
[
0
]
kernel_d2
=
weight
.
shape
[
1
]
kernel_d3
=
weight
.
shape
[
2
]
# in_channels = weight.shape[3]
n_filters
=
weight
.
shape
[
4
]
dilated_kernel_d1
=
(
kernel_d1
-
1
)
*
dilation
[
0
]
+
1
dilated_kernel_d2
=
(
kernel_d2
-
1
)
*
dilation
[
1
]
+
1
dilated_kernel_d3
=
(
kernel_d3
-
1
)
*
dilation
[
2
]
+
1
stride_d1
,
stride_d2
,
stride_d3
=
keras_layer
.
strides
params
=
{
'weight'
:
etab
.
new_const
(
weight
),
'kernel_size'
:
[
kernel_d1
,
kernel_d2
,
kernel_d3
],
'strides'
:
[
stride_d1
,
stride_d2
,
stride_d3
],
'dilation'
:
dilation
,
'padding'
:
[
0
,
0
,
0
],
'data_layout'
:
etab
.
data_layout
,
'kernel_layout'
:
kernel_layout
}
params
[
'channels'
]
=
n_filters
if
keras_layer
.
padding
==
'valid'
:
pass
# calculate the padding values
elif
keras_layer
.
padding
==
'same'
:
in_d1
=
keras_layer
.
input_shape
[
1
]
in_d2
=
keras_layer
.
input_shape
[
2
]
in_d3
=
keras_layer
.
input_shape
[
3
]
pad_d1
=
_get_pad_pair
(
in_d1
,
dilated_kernel_d1
,
stride_d1
)
pad_d2
=
_get_pad_pair
(
in_d2
,
dilated_kernel_d2
,
stride_d2
)
pad_d3
=
_get_pad_pair
(
in_d3
,
dilated_kernel_d3
,
stride_d3
)
params
[
'padding'
]
=
[
pad_d1
[
0
],
pad_d2
[
0
],
pad_d3
[
0
],
pad_d1
[
1
],
pad_d2
[
1
],
pad_d3
[
1
]]
else
:
msg
=
'Padding with {} is not supported for operator Convolution '
\
'in frontend Keras.'
raise
tvm
.
error
.
OpAttributeUnImplemented
(
msg
.
format
(
keras_layer
.
padding
))
out
=
_op
.
nn
.
conv3d
(
data
=
inexpr
,
**
params
)
channel_axis
=
-
1
if
etab
.
data_layout
==
"NDHWC"
else
1
if
keras_layer
.
use_bias
:
bias
=
etab
.
new_const
(
weightList
[
1
])
out
=
_op
.
nn
.
bias_add
(
out
,
bias
,
channel_axis
)
# defuse activation
if
sys
.
version_info
.
major
<
3
:
act_type
=
keras_layer
.
activation
.
func_name
else
:
act_type
=
keras_layer
.
activation
.
__name__
if
act_type
!=
'linear'
:
out
=
_convert_activation
(
out
,
act_type
,
etab
)
return
out
def
_convert_separable_convolution
(
inexpr
,
keras_layer
,
etab
):
_check_data_format
(
keras_layer
)
...
...
@@ -743,19 +812,27 @@ _convert_map = {
# 'GlobalMaxPooling1D' : _convert_pooling,
# 'Cropping1D' : _convert_cropping,
# 'UpSampling1D' : _convert_upsample,
# 'UpSampling3D' : _convert_upsample,
# 'Conv1D' : _convert_convolution1d,
'Conv3D'
:
_convert_convolution3d
,
# 'Conv3DTranspose' : _convert_convolution3d,
# 'SeparableConv3D' : _convert_convolution3d,
# 'MaxPooling3D' : _convert_pooling3d,
# 'AveragePooling3D' : _convert_pooling3d,
# 'GlobalMaxPooling3D' : _convert_pooling3d,
# 'GlobalAveragePooling3D' : _convert_pooling3d,
# 'UpSampling3D' : _convert_upsample3d,
'SimpleRNN'
:
_convert_simple_rnn
,
'LSTM'
:
_convert_lstm
,
'GRU'
:
_convert_gru
,
# 'Bidirectional' : _convert_bidirectional,
# 'TimeDistributed' : _default_skip,
'Average'
:
_convert_merge
,
'Maximum'
:
_convert_merge
,
'Dot'
:
_convert_merge
,
'Permute'
:
_convert_permute
,
'Average'
:
_convert_merge
,
'Maximum'
:
_convert_merge
,
'Dot'
:
_convert_merge
,
'Permute'
:
_convert_permute
,
# 'Embedding' : _convert_embedding,
# 'RepeatVector' : _convert_repeat_vector,
...
...
@@ -867,7 +944,7 @@ def from_keras(model, shape=None, layout='NCHW'):
etab
=
ExprTable
()
# Set global data format.
assert
layout
in
[
'NCHW'
,
'NHWC'
],
"Layout must be one of 'NCHW' or N
HWC"
assert
layout
in
[
'NCHW'
,
'NHWC'
,
'NDHWC'
],
"Layout must be one of 'NCHW', NHWC or ND
HWC"
etab
.
data_layout
=
layout
for
keras_layer
in
model
.
layers
:
if
isinstance
(
keras_layer
,
input_layer_class
):
...
...
tests/python/frontend/keras/test_forward.py
View file @
050f2bde
...
...
@@ -398,6 +398,28 @@ class TestKeras:
input_shape
=
(
224
,
224
,
3
),
classes
=
1000
)
verify_keras_frontend
(
keras_model
,
layout
=
layout
)
def
test_forward_conv3d
(
self
,
keras
):
data
=
keras
.
layers
.
Input
(
shape
=
(
32
,
32
,
32
,
3
))
conv_funcs
=
[
keras
.
layers
.
Conv3D
(
filters
=
10
,
kernel_size
=
(
3
,
3
,
3
),
strides
=
(
2
,
2
,
2
),
padding
=
'same'
),
keras
.
layers
.
Conv3D
(
filters
=
10
,
kernel_size
=
(
3
,
3
,
3
),
dilation_rate
=
(
2
,
2
,
2
),
padding
=
'same'
),
keras
.
layers
.
Conv3D
(
filters
=
1
,
kernel_size
=
(
3
,
3
,
3
),
padding
=
'valid'
,
use_bias
=
False
),
keras
.
layers
.
Conv3D
(
filters
=
10
,
kernel_size
=
(
2
,
2
,
2
),
padding
=
'valid'
),
]
for
conv_func
in
conv_funcs
:
x
=
conv_func
(
data
)
keras_model
=
keras
.
models
.
Model
(
data
,
x
)
verify_keras_frontend
(
keras_model
,
layout
=
'NDHWC'
)
if
__name__
==
'__main__'
:
for
k
in
[
keras
,
tf_keras
]:
...
...
@@ -426,3 +448,4 @@ if __name__ == '__main__':
sut
.
test_forward_resnet50
(
keras
=
k
,
layout
=
'NHWC'
)
sut
.
test_forward_mobilenet
(
keras
=
k
)
sut
.
test_forward_mobilenet
(
keras
=
k
,
layout
=
'NHWC'
)
sut
.
test_forward_conv3d
(
keras
=
k
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment