Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
04e81624
Commit
04e81624
authored
Jun 18, 2019
by
Wuwei Lin
Committed by
Tianqi Chen
Jun 17, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[Relay][Pass] CanonicalizeCast (#3280)
parent
fa351045
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
232 additions
and
0 deletions
+232
-0
include/tvm/relay/transform.h
+7
-0
python/tvm/relay/transform.py
+10
-0
src/relay/backend/build_module.cc
+1
-0
src/relay/pass/canonicalize_cast.cc
+144
-0
tests/python/relay/test_pass_canonicalize_cast.py
+70
-0
No files found.
include/tvm/relay/transform.h
View file @
04e81624
...
...
@@ -534,6 +534,13 @@ TVM_DLL Pass CanonicalizeOps();
*/
TVM_DLL
Pass
AlterOpLayout
();
/*!
* \brief Canonicalize cast expressions to make operator fusion more efficient.
*
* \return The pass.
*/
TVM_DLL
Pass
CanonicalizeCast
();
}
// namespace transform
}
// namespace relay
}
// namespace tvm
...
...
python/tvm/relay/transform.py
View file @
04e81624
...
...
@@ -445,6 +445,16 @@ def PartialEvaluate():
"""
return
_transform
.
PartialEvaluate
()
def
CanonicalizeCast
():
"""
Canonicalize cast expressions to make operator fusion more efficient.
Returns
-------
ret : tvm.relay.Pass
The registered pass that canonicalizes cast expression.
"""
return
_transform
.
CanonicalizeCast
()
def
_wrap_class_module_pass
(
pass_cls
,
pass_info
):
"""Wrap a python class as function pass"""
...
...
src/relay/backend/build_module.cc
View file @
04e81624
...
...
@@ -299,6 +299,7 @@ class RelayBuildModule : public runtime::ModuleNode {
pass_seqs
.
push_back
(
transform
::
CombineParallelConv2D
(
3
));
pass_seqs
.
push_back
(
transform
::
FoldConstant
());
pass_seqs
.
push_back
(
transform
::
FoldScaleAxis
());
pass_seqs
.
push_back
(
transform
::
CanonicalizeCast
());
pass_seqs
.
push_back
(
transform
::
CanonicalizeOps
());
// Alter layout transformation is only applied to homogeneous execution yet.
...
...
src/relay/pass/canonicalize_cast.cc
0 → 100644
View file @
04e81624
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2019 by Contributors
* \file canonicalize_cast.cc
* \brief Canonicalize cast expressions to make operator fusion more efficient.
*/
#include <tvm/relay/pass.h>
#include <tvm/relay/expr_functor.h>
#include <tvm/relay/attrs/nn.h>
#include <tvm/relay/transform.h>
#include "pattern_util.h"
#include "pass_util.h"
namespace
tvm
{
namespace
relay
{
// This pass finds upcast that is referred by multiple elemwise/broadcast operators, and creates a
// copy of it in each branch such that after fusion the previous function have output with fewer
// bits.
//
// Consider the following example:
// \code
// def @main(x: int8) {
// %1 = cast(%x, f32)
// %2 = exp(%1)
// %3 = log(%1)
// (%3, 4)
// }
// \endcode
//
// We would like to prevent sharing of the cast expression such that operator fusion can produce
// more efficient result as below.
// \code
// def @main(x: int8) {
// %1 = fn (%p1: i8) {
// exp(cast(%p1, f32)
// }
// %3 = %1(%x)
// %2 = fn (%p1: i8) {
// log(cast(%p1, f32)
// }
// %4 = %2(%x)
// (%3, 4)
// }
// \endcode
class
CastCanonicalizer
:
public
ExprMutator
{
public
:
Expr
VisitExpr_
(
const
CallNode
*
call
)
{
static
auto
fpattern
=
Op
::
GetAttr
<
TOpPattern
>
(
"TOpPattern"
);
if
(
const
OpNode
*
opnode
=
call
->
op
.
as
<
OpNode
>
())
{
auto
pattern
=
fpattern
[
GetRef
<
Op
>
(
opnode
)];
if
(
pattern
<=
kBroadcast
)
{
Array
<
Expr
>
call_args
=
call
->
args
;
bool
unchanged
=
true
;
for
(
size_t
i
=
0
;
i
<
call_args
.
size
();
++
i
)
{
Expr
arg
=
call_args
[
i
];
Expr
new_arg
=
GetNewCallArg
(
arg
);
if
(
!
arg
.
same_as
(
new_arg
))
{
call_args
.
Set
(
i
,
new_arg
);
unchanged
=
false
;
}
}
if
(
unchanged
)
{
return
GetRef
<
Expr
>
(
call
);
}
return
CallNode
::
make
(
call
->
op
,
call_args
,
call
->
attrs
,
call
->
type_args
);
}
}
Expr
new_expr
=
ExprMutator
::
VisitExpr_
(
call
);
return
new_expr
;
}
private
:
std
::
unordered_map
<
const
Node
*
,
size_t
>
ref_counter_
;
Expr
GetNewCallArg
(
const
Expr
&
e
)
{
// if e is a upcast and ref count > 1, create an copy; otherwise call the default visitor
static
auto
&
cast
=
Op
::
Get
(
"cast"
);
Expr
new_expr
=
this
->
VisitExpr
(
e
);
if
(
const
CallNode
*
call
=
e
.
as
<
CallNode
>
())
{
if
(
call
->
op
.
same_as
(
cast
))
{
auto
attrs
=
call
->
attrs
.
as
<
CastAttrs
>
();
const
auto
*
from_type
=
call
->
args
[
0
]
->
type_as
<
TensorTypeNode
>
();
CHECK
(
from_type
);
if
(
from_type
->
dtype
.
bits
()
<
attrs
->
dtype
.
bits
())
{
if
(
++
ref_counter_
[
call
]
>
1
)
{
const
CallNode
*
new_call
=
new_expr
.
as
<
CallNode
>
();
CHECK
(
new_call
);
CHECK
(
new_call
->
op
.
same_as
(
cast
));
return
CallNode
::
make
(
new_call
->
op
,
new_call
->
args
,
new_call
->
attrs
,
new_call
->
type_args
);
}
}
}
}
return
new_expr
;
}
};
Expr
CanonicalizeCast
(
const
Expr
&
e
)
{
return
CastCanonicalizer
().
Mutate
(
e
);
}
namespace
transform
{
Pass
CanonicalizeCast
()
{
runtime
::
TypedPackedFunc
<
Function
(
Function
,
Module
,
PassContext
)
>
pass_func
=
[
=
](
Function
f
,
Module
m
,
PassContext
pc
)
{
return
Downcast
<
Function
>
(
CanonicalizeCast
(
f
));
};
return
CreateFunctionPass
(
pass_func
,
3
,
"CanonicalizeCast"
,
{
ir
::
StringImm
::
make
(
"InferType"
)});
}
TVM_REGISTER_API
(
"relay._transform.CanonicalizeCast"
)
.
set_body_typed
(
CanonicalizeCast
);
}
// namespace transform
}
// namespace relay
}
// namespace tvm
tests/python/relay/test_pass_canonicalize_cast.py
0 → 100644
View file @
04e81624
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import
tvm
import
tvm.relay
as
relay
import
tvm.relay.module
as
_module
import
tvm.relay.transform
as
_transform
def
test_canonicalize_cast
():
def
before
(
data
,
conv_weight
,
bias1
,
bias2
):
x
=
relay
.
nn
.
conv2d
(
data
,
conv_weight
,
channels
=
16
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
out_dtype
=
"int8"
)
x1
=
relay
.
cast
(
x
,
dtype
=
"int32"
)
y1
=
relay
.
add
(
x1
,
bias1
)
y2
=
relay
.
add
(
x1
,
bias2
)
y
=
relay
.
add
(
y1
,
y2
)
return
relay
.
Function
([
data
,
conv_weight
,
bias1
,
bias2
],
y
)
def
expected
(
data
,
conv_weight
,
bias1
,
bias2
):
x
=
relay
.
nn
.
conv2d
(
data
,
conv_weight
,
channels
=
16
,
kernel_size
=
(
3
,
3
),
padding
=
(
1
,
1
),
out_dtype
=
"int8"
)
x1
=
relay
.
cast
(
x
,
dtype
=
"int32"
)
x2
=
relay
.
cast
(
x
,
dtype
=
"int32"
)
y1
=
relay
.
add
(
x1
,
bias1
)
y2
=
relay
.
add
(
x2
,
bias2
)
y
=
relay
.
add
(
y1
,
y2
)
return
relay
.
Function
([
data
,
conv_weight
,
bias1
,
bias2
],
y
)
def
check
(
shape
):
data
=
relay
.
var
(
"data"
,
shape
=
shape
,
dtype
=
"int8"
)
conv_weight
=
relay
.
var
(
"weight"
)
bias1
=
relay
.
var
(
"bias1"
,
shape
=
(
16
,
1
,
1
),
dtype
=
"int32"
)
bias2
=
relay
.
var
(
"bias2"
,
shape
=
(
16
,
1
,
1
),
dtype
=
"int32"
)
y
=
before
(
data
,
conv_weight
,
bias1
,
bias2
)
mod
=
_module
.
Module
.
from_expr
(
y
)
seq
=
_transform
.
Sequential
([
_transform
.
InferType
(),
_transform
.
CanonicalizeCast
(),
_transform
.
InferType
()])
with
_transform
.
PassContext
(
opt_level
=
3
):
mod
=
seq
(
mod
)
y
=
mod
[
mod
.
entry_func
.
name_hint
]
y_expected
=
expected
(
data
,
conv_weight
,
bias1
,
bias2
)
y_expected
=
relay
.
ir_pass
.
infer_type
(
y_expected
)
assert
relay
.
ir_pass
.
alpha_equal
(
y
,
y_expected
)
check
((
1
,
16
,
7
,
7
))
if
__name__
==
'__main__'
:
test_canonicalize_cast
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment