Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
T
tic
Overview
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenyuanbo
tic
Commits
0241fdc5
Commit
0241fdc5
authored
Aug 07, 2018
by
Albin Joy
Committed by
Yizhi Liu
Aug 06, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[FRONTEND][ONNX]LRN support for ONNX (#1518)
* LRN support for ONNX * [ONNX] Updated lrn testcases
parent
a8574e7b
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
72 additions
and
1 deletions
+72
-1
nnvm/python/nnvm/frontend/onnx.py
+18
-1
nnvm/tests/python/frontend/onnx/test_forward.py
+54
-0
No files found.
nnvm/python/nnvm/frontend/onnx.py
View file @
0241fdc5
...
...
@@ -499,6 +499,23 @@ class Gather(OnnxOpConverter):
params
[
name
]
=
indices
return
_sym
.
take
(
inputs
[
0
],
gather_indices
,
axis
=
axis
)
class
LRN
(
OnnxOpConverter
):
""" Operator converter for Local Response Normalization.
"""
@classmethod
def
_impl_v1
(
cls
,
inputs
,
attr
,
params
):
"""LRN support only NCHW format
https://github.com/onnx/onnx/blob/master/docs/Operators.md#LRN
"""
axis
=
1
alpha
=
attr
.
get
(
'alpha'
,
0.0001
)
beta
=
attr
.
get
(
'beta'
,
0.75
)
bias
=
attr
.
get
(
'bias'
,
1.0
)
nsize
=
attr
.
get
(
'size'
)
return
_sym
.
lrn
(
inputs
[
0
],
size
=
nsize
,
axis
=
axis
,
alpha
=
alpha
,
beta
=
beta
,
bias
=
bias
)
# compatible operators that do NOT require any conversion.
_identity_list
=
[]
...
...
@@ -586,7 +603,7 @@ def _get_convert_map(opset):
# 'LpNormalization'
'Dropout'
:
AttrCvt
(
'dropout'
,
{
'ratio'
:
'rate'
},
ignores
=
[
'is_test'
]),
'Flatten'
:
Renamer
(
'flatten'
),
# 'LRN'
'LRN'
:
LRN
.
get_converter
(
opset
),
# defs/reduction
'ReduceMax'
:
AttrCvt
(
'max'
,
{
'axes'
,
'axis'
}),
...
...
nnvm/tests/python/frontend/onnx/test_forward.py
View file @
0241fdc5
import
numpy
as
np
import
math
import
nnvm
import
tvm
from
tvm.contrib
import
graph_runtime
...
...
@@ -312,6 +313,58 @@ def test_matmul():
np
.
testing
.
assert_allclose
(
np
.
matmul
(
a_array
,
b_array
),
tvm_out
.
asnumpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
def
verify_lrn
(
shape
,
nsize
,
dtype
,
alpha
=
None
,
beta
=
None
,
bias
=
None
):
in_array
=
np
.
random
.
uniform
(
size
=
shape
)
.
astype
(
dtype
)
if
alpha
==
None
and
beta
==
None
and
bias
==
None
:
alpha
=
0.0001
beta
=
0.75
bias
=
1.0
node
=
onnx
.
helper
.
make_node
(
'LRN'
,
inputs
=
[
'in'
],
outputs
=
[
'out'
],
size
=
nsize
)
else
:
node
=
onnx
.
helper
.
make_node
(
'LRN'
,
inputs
=
[
'in'
],
outputs
=
[
'out'
],
alpha
=
alpha
,
beta
=
beta
,
bias
=
bias
,
size
=
nsize
)
graph
=
helper
.
make_graph
([
node
],
"lrn_test"
,
inputs
=
[
helper
.
make_tensor_value_info
(
"in"
,
TensorProto
.
FLOAT
,
list
(
shape
))],
outputs
=
[
helper
.
make_tensor_value_info
(
"out"
,
TensorProto
.
FLOAT
,
list
(
shape
))])
model
=
helper
.
make_model
(
graph
,
producer_name
=
'lrn_test'
)
def
_get_python_lrn
():
square_sum
=
np
.
zeros
(
shape
)
.
astype
(
dtype
)
for
n
,
c
,
h
,
w
in
np
.
ndindex
(
in_array
.
shape
):
square_sum
[
n
,
c
,
h
,
w
]
=
sum
(
in_array
[
n
,
max
(
0
,
c
-
int
(
math
.
floor
((
nsize
-
1
)
/
2
))):
\
min
(
5
,
c
+
int
(
math
.
ceil
((
nsize
-
1
)
/
2
))
+
1
),
h
,
w
]
**
2
)
py_out
=
in_array
/
((
bias
+
(
alpha
/
nsize
)
*
square_sum
)
**
beta
)
return
py_out
for
target
,
ctx
in
ctx_list
():
new_sym
,
params
=
nnvm
.
frontend
.
from_onnx
(
model
)
input_name
=
model
.
graph
.
input
[
0
]
.
name
shape_dict
=
{
input_name
:
in_array
.
shape
}
dtype_dict
=
{
input_name
:
dtype
}
graph
,
lib
,
params
=
nnvm
.
compiler
.
build
(
new_sym
,
target
,
shape_dict
,
dtype_dict
,
params
=
params
)
m
=
graph_runtime
.
create
(
graph
,
lib
,
ctx
)
# set inputs
m
.
set_input
(
input_name
,
tvm
.
nd
.
array
(
in_array
.
astype
(
dtype
)))
m
.
set_input
(
**
params
)
m
.
run
()
# get outputs
tvm_out
=
m
.
get_output
(
0
,
tvm
.
nd
.
empty
(
shape
,
dtype
))
py_out
=
_get_python_lrn
()
np
.
testing
.
assert_allclose
(
py_out
,
tvm_out
.
asnumpy
(),
rtol
=
1e-5
,
atol
=
1e-5
)
def
test_lrn
():
verify_lrn
((
5
,
5
,
5
,
5
),
3
,
'float32'
)
verify_lrn
((
5
,
5
,
5
,
5
),
3
,
'float32'
,
alpha
=
0.0002
,
beta
=
0.5
,
bias
=
2.0
)
if
__name__
==
'__main__'
:
# verify_super_resolution_example()
# verify_squeezenet1_1()
...
...
@@ -328,3 +381,4 @@ if __name__ == '__main__':
test_clip
()
test_matmul
()
test_gather
()
test_lrn
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment