Commit 001ab525 by Andrew Tulloch Committed by Yizhi Liu

Bundled interpreter demo (#2297)

parent 766008ca
# Makefile Example to bundle TVM modules.
TVM_ROOT=$(shell cd ../..; pwd)
NNVM_PATH=nnvm
DMLC_CORE=${TVM_ROOT}/3rdparty/dmlc-core
PKG_CFLAGS = -std=c++14 -Oz -fPIC\
-I${TVM_ROOT}/include\
-I${DMLC_CORE}/include\
-I${TVM_ROOT}/3rdparty/dlpack/include\
PKG_LDFLAGS = -L${TVM_ROOT}/build
build_dir := build
test: $(build_dir)/demo $(build_dir)/bundle.so
$(build_dir)/demo $(build_dir)/bundle.so
$(build_dir)/demo: demo.cc
@mkdir -p $(@D)
$(CXX) $(PKG_CFLAGS) -o $@ $^
# Serialize our graph.json file.
$(build_dir)/graph.json.cc: $(build_dir)/graph.json
xxd -i $^ > $@
# Serialize our params.bin file.
$(build_dir)/params.bin.cc: $(build_dir)/params.bin
xxd -i $^ > $@
$(build_dir)/model.o $(build_dir)/graph.json $(build_dir)/params.bin: build_model.py
python $< -o $(build_dir)
# Build our bundle against the serialized bundle.cc API, the runtime.cc API, and
# the serialized graph.json and params.bin
$(build_dir)/bundle.so: bundle.cc runtime.cc $(build_dir)/model.o $(build_dir)/graph.json.cc $(build_dir)/params.bin.cc
@mkdir -p $(@D)
$(CXX) $(PKG_CFLAGS) -fvisibility=hidden -o $@ $^ $(PKG_LDFLAGS) -shared
clean:
rm -r $(build_dir)
How to Bundle TVM Modules
=========================
This folder contains an example on how to bundle a TVM module (with the required
interpreter runtime modules such as `runtime::GraphRuntime`, the graph JSON, and
the params) into a single, self-contained shared object (`bundle.so`) which
exposes a C API wrapping the appropriate `runtime::GraphRuntime` instance.
This is useful for cases where we'd like to avoid deploying the TVM runtime
components to the target host in advance - instead, we simply deploy the bundled
shared-object to the host, which embeds both the model and the runtime
components. The bundle should only depend on libc/libc++.
It also contains an example code (`demo.cc`) to load this shared object and
invoke the packaged TVM model instance. This is a dependency-free binary that
uses the functionality packaged in `bundle.so` (which means that `bundle.so` can
be deployed lazily at runtime, instead of at compile time) to invoke TVM
functionality.
Type the following command to run the sample code under the current folder,
after building TVM first.
```bash
make demo
```
This will:
- Download the mobilenet0.25 model from the MXNet Gluon Model Zoo
- Compile the model with NNVM
- Build a `bundle.so` shared object containing the model specification and
parameters
- Build a `demo` executable that `dlopen`'s `bundle.so`, instantiates the
contained graph runtime, and invokes the `GraphRuntime::Run` function on a
random input, then prints the output tensor to `stderr`.
"""Creates a simple TVM modules."""
import argparse
import os
import nnvm.compiler
import nnvm.testing
import tvm
import logging
def main():
logging.basicConfig(level=logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--out-dir', default='.')
opts = parser.parse_args()
dshape = (1, 3, 224, 224)
from mxnet.gluon.model_zoo.vision import get_model
block = get_model('mobilenet0.25', pretrained=True)
net, params = nnvm.frontend.from_mxnet(block)
net = nnvm.sym.softmax(net)
with nnvm.compiler.build_config(opt_level=3):
graph, lib, params = nnvm.compiler.build(
net, 'llvm --system-lib', shape={'data': dshape}, params=params)
print(graph.symbol().debug_str())
build_dir = os.path.abspath(opts.out_dir)
if not os.path.isdir(build_dir):
os.makedirs(build_dir)
lib.save(os.path.join(build_dir, 'model.o'))
with open(os.path.join(build_dir, 'graph.json'), 'w') as f_graph_json:
f_graph_json.write(graph.json())
with open(os.path.join(build_dir, 'params.bin'), 'wb') as f_params:
f_params.write(nnvm.compiler.save_param_dict(params))
if __name__ == '__main__':
main()
#include <memory>
#include <tvm/runtime/c_runtime_api.h>
#include <tvm/runtime/registry.h>
extern unsigned char build_graph_json[];
extern unsigned int build_graph_json_len;
extern unsigned char build_params_bin[];
extern unsigned int build_params_bin_len;
#define TVM_BUNDLE_FUNCTION __attribute__((visibility("default"))) extern "C"
TVM_BUNDLE_FUNCTION void *tvm_runtime_create() {
const std::string json_data(&build_graph_json[0],
&build_graph_json[0] + build_graph_json_len);
tvm::runtime::Module mod_syslib =
(*tvm::runtime::Registry::Get("module._GetSystemLib"))();
int device_type = kDLCPU;
int device_id = 0;
tvm::runtime::Module mod =
(*tvm::runtime::Registry::Get("tvm.graph_runtime.create"))(
json_data, mod_syslib, device_type, device_id);
TVMByteArray params;
params.data = reinterpret_cast<const char *>(&build_params_bin[0]);
params.size = build_params_bin_len;
mod.GetFunction("load_params")(params);
return new tvm::runtime::Module(mod);
}
TVM_BUNDLE_FUNCTION void tvm_runtime_destroy(void *handle) {
delete reinterpret_cast<tvm::runtime::Module *>(handle);
}
TVM_BUNDLE_FUNCTION void tvm_runtime_set_input(void *handle, const char *name,
void *tensor) {
reinterpret_cast<tvm::runtime::Module *>(handle)->GetFunction("set_input")(
name, reinterpret_cast<DLTensor *>(tensor));
}
TVM_BUNDLE_FUNCTION void tvm_runtime_run(void *handle) {
reinterpret_cast<tvm::runtime::Module *>(handle)->GetFunction("run")();
}
TVM_BUNDLE_FUNCTION void tvm_runtime_get_output(void *handle, int index,
void *tensor) {
reinterpret_cast<tvm::runtime::Module *>(handle)->GetFunction("get_output")(
index, reinterpret_cast<DLTensor *>(tensor));
}
#include "tvm/runtime/c_runtime_api.h"
#include <assert.h>
#include <dlfcn.h> //dlopen
#include <dlpack/dlpack.h>
#include <iostream>
#include <random>
#include <vector>
template <typename F> auto getFunc(void *bundle, const char *name) {
dlerror();
auto *f =
reinterpret_cast<typename std::add_pointer<F>::type>(dlsym(bundle, name));
assert(!dlerror());
return f;
}
int main(int argc, char **argv) {
assert(argc == 2 && "Usage: demo <bundle.so>");
auto *bundle = dlopen(argv[1], RTLD_LAZY | RTLD_LOCAL);
assert(bundle);
auto *handle = getFunc<void *()>(bundle, "tvm_runtime_create")();
std::vector<float> input_storage(1 * 3 * 224 * 224);
std::mt19937 gen(0);
for (auto &e : input_storage) {
e = std::uniform_real_distribution<float>(0.0, 1.0)(gen);
}
std::vector<int64_t> input_shape = {1, 3, 224, 224};
DLTensor input;
input.data = input_storage.data();
input.ctx = DLContext{kDLCPU, 0};
input.ndim = 4;
input.dtype = DLDataType{kDLFloat, 32, 1};
input.shape = input_shape.data();
input.strides = nullptr;
input.byte_offset = 0;
getFunc<void(void *, const char *, void *)>(bundle, "tvm_runtime_set_input")(
handle, "data", &input);
auto *ftvm_runtime_run =
(auto (*)(void *)->void)dlsym(bundle, "tvm_runtime_run");
assert(!dlerror());
ftvm_runtime_run(handle);
std::vector<float> output_storage(1000);
std::vector<int64_t> output_shape = {1, 1000};
DLTensor output;
output.data = output_storage.data();
output.ctx = DLContext{kDLCPU, 0};
output.ndim = 2;
output.dtype = DLDataType{kDLFloat, 32, 1};
output.shape = output_shape.data();
output.strides = nullptr;
output.byte_offset = 0;
getFunc<void(void *, int, void *)>(bundle, "tvm_runtime_get_output")(
handle, 0, &output);
for (auto i = 0; i < output_storage.size(); ++i) {
std::cerr << "output[" << i << "]: " << output_storage[i] << std::endl;
}
getFunc<void(void *)>(bundle, "tvm_runtime_destroy")(handle);
dlclose(bundle);
return 0;
}
#include <dlpack/dlpack.h>
#include <tvm/runtime/module.h>
#include <tvm/runtime/registry.h>
#include <tvm/runtime/packed_func.h>
#include "../../src/runtime/c_runtime_api.cc"
#include "../../src/runtime/cpu_device_api.cc"
#include "../../src/runtime/workspace_pool.cc"
#include "../../src/runtime/module_util.cc"
#include "../../src/runtime/module.cc"
#include "../../src/runtime/registry.cc"
#include "../../src/runtime/file_util.cc"
#include "../../src/runtime/threading_backend.cc"
#include "../../src/runtime/thread_pool.cc"
#include "../../src/runtime/ndarray.cc"
#include "../../src/runtime/system_lib_module.cc"
#include "../../src/runtime/graph/graph_runtime.cc"
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment