test_runtime_packed_func.py 10 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25
import tvm
import numpy as np

def test_get_global():
    targs = (10, 10.0, "hello")
    # register into global function table
    @tvm.register_func
    def my_packed_func(*args):
        assert(tuple(args) == targs)
26
        return 10
27 28
    # get it out from global function table
    f = tvm.get_global_func("my_packed_func")
29
    assert isinstance(f, tvm.Function)
30 31 32
    y = f(*targs)
    assert y == 10

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
def test_get_callback_with_node():
    x = tvm.convert(10)
    def test(y):
        assert y.handle != x.handle
        return y

    f2 = tvm.convert(test)
    # register into global function table
    @tvm.register_func
    def my_callback_with_node(y, f):
        assert y == x
        return f(y)

    # get it out from global function table
    f = tvm.get_global_func("my_callback_with_node")
    assert isinstance(f, tvm.Function)
    y = f(x, f2)
    assert(y.value == 10)

52 53 54 55 56 57 58 59 60

def test_return_func():
    def addy(y):
        def add(x):
            return tvm.convert(x + y)
        return add
    myf = tvm.convert(addy)
    f = myf(10)
    assert f(11).value == 21
61 62 63 64 65 66 67 68 69


def test_convert():
    # convert a function to tvm function
    targs = (10, 10.0, "hello", 10)
    def myfunc(*args):
        assert(tuple(args) == targs)

    f = tvm.convert(myfunc)
70
    assert isinstance(f, tvm.Function)
71

72 73 74 75 76 77 78 79
def test_byte_array():
    s = "hello"
    a = bytearray(s, encoding="ascii")

    def myfunc(ss):
        assert ss == a
    f = tvm.convert(myfunc)
    f(a)
80

81

82 83 84 85 86 87 88
def test_empty_array():
    def myfunc(ss):
        assert tuple(ss) == ()
    x = tvm.convert(())
    tvm.convert(myfunc)(x)


89 90 91 92 93 94 95 96 97 98
def test_ctx():
    def test_ctx_func(ctx):
        assert tvm.gpu(7) == ctx
        return tvm.cpu(0)
    x = test_ctx_func(tvm.gpu(7))
    assert x == tvm.cpu(0)
    x = tvm.opencl(10)
    x = tvm._api_internal._context_test(x, x.device_type, x.device_id)
    assert x == tvm.opencl(10)

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
def test_trace_default_action():
    n = 2
    x = tvm.placeholder((n,n,n), name="X", dtype="float32")
    y = tvm.compute(x.shape, lambda i, j, k: tvm.trace([i, j, k, x[i][j][k]]))
    s = tvm.create_schedule(y.op)
    f = tvm.build(s, [x, y], target="llvm")
    xnd = tvm.nd.array(np.ones((n,n,n), dtype=x.dtype))
    ynd = tvm.nd.array(np.zeros((n,n,n), dtype=y.dtype))
    f(xnd, ynd)

def test_trace_expr_assign():
    @tvm.register_func("tvm.trace_callback2")
    def trace_buffer(x):
        return

    def check_assign(dtype):
        n = 4
        x = tvm.placeholder((n,n,n), name="X", dtype=dtype)
        y = tvm.compute(x.shape, lambda i, j, k: tvm.trace([x[i][j][k]], "tvm.trace_callback2"))
        z = tvm.compute(x.shape, lambda i, j, k: tvm.trace([y[i][j][k]], "tvm.trace_callback2"))
        s = tvm.create_schedule(z.op)
        f = tvm.build(s, [x, y, z], "llvm")

        xnd = tvm.nd.array(np.ones((n,n,n), dtype=x.dtype))
        ynd = tvm.nd.array(np.zeros((n,n,n), dtype=y.dtype))
        znd = tvm.nd.array(np.zeros((n,n,n), dtype=z.dtype))
        f(xnd, ynd, znd)

        assert(np.array_equal(xnd.asnumpy(), np.ones((n,n,n))))
        assert(np.array_equal(ynd.asnumpy(), np.ones((n,n,n))))
        assert(np.array_equal(znd.asnumpy(), np.ones((n,n,n))))

    for t in ["float64", "float32", "int64", "int32"]:
        check_assign(t)

def test_trace_expr_sum_generated():
    @tvm.register_func("tvm.trace_callback3")
    def trace_buffer(x):
        return

    def check_expr_sum(dtype):
        n = 4
        a = tvm.placeholder((n,n,n), name="a", dtype=dtype)
        b = tvm.placeholder((n,n,n), name="b", dtype=dtype)
        c = tvm.compute(a.shape, lambda i, j, k: tvm.trace([a[i][j][k]],"tvm.trace_callback3")
                                         + tvm.trace([b[i][j][k]],"tvm.trace_callback3"))
        s = tvm.create_schedule(c.op)
        f = tvm.build(s, [a, b, c])
        xnd = tvm.nd.array(np.array(np.ones((n,n,n), dtype=a.dtype)))
        ynd = tvm.nd.array(np.array(np.ones((n,n,n), dtype=b.dtype)))
        znd = tvm.nd.array(np.zeros((n,n,n), dtype=c.dtype))
        f(xnd, ynd, znd)
        assert(np.array_equal(znd.asnumpy(), xnd.asnumpy() + ynd.asnumpy()))

    for t in ["float64", "float32", "int64", "int32"]:
        check_expr_sum(t)

def test_trace_expr_sum_args():
    @tvm.register_func("tvm.trace_silent")
    def silent(*args):
      return

    def check_expr_sum(dtype):
        n = 4
        a = tvm.placeholder((n,n,n), name="a", dtype=dtype)
        b = tvm.placeholder((n,n,n), name="b", dtype=dtype)
        e = tvm.placeholder((n,n,n), name="e", dtype=dtype)
        d = tvm.placeholder((n,n,n), name="d", dtype=dtype)

        c = tvm.compute(a.shape, lambda i, j, k: tvm.trace([i, j, k, a[i][j][k]], "tvm.trace_silent")
                                               + tvm.trace([i, j, k, b[i][j][k]], "tvm.trace_silent")
                                               + tvm.trace([i, j, k, d[i][j][k]], "tvm.trace_silent")
                                               + tvm.trace([i, j, k, e[i][j][k]], "tvm.trace_silent"))
        s = tvm.create_schedule(c.op)
        f = tvm.build(s, [a, b, d, e, c])
        a_nd = tvm.nd.array(np.array(np.ones((n,n,n), dtype=a.dtype)))
        b_nd = tvm.nd.array(np.array(np.ones((n,n,n), dtype=b.dtype)))
        d_nd = tvm.nd.array(np.array(np.ones((n,n,n), dtype=d.dtype)))
        e_nd = tvm.nd.array(np.array(np.ones((n,n,n), dtype=e.dtype)))
        c_nd = tvm.nd.array(np.zeros((n,n,n), dtype=c.dtype))
        f(a_nd, b_nd, d_nd, e_nd, c_nd)
        assert(np.array_equal(c_nd.asnumpy(), a_nd.asnumpy()
                                            + b_nd.asnumpy()
                                            + d_nd.asnumpy()
                                            + e_nd.asnumpy()))

    for t in ["float64", "float32", "int64", "int32"]:
        check_expr_sum(t)

def test_trace_expr_sum_custom():
    @tvm.register_func("tvm.trace_callback4")
    def trace_buffer(x):
        return

    def check_expr_sum_custom(dtype):
        n = 4
        a = tvm.placeholder((n,n), name="a", dtype=dtype)
        b = tvm.placeholder((n,n), name="b", dtype=dtype)
        c = tvm.compute(a.shape, lambda i,j: tvm.trace([a[i][j]], "tvm.trace_callback4")
                                         + tvm.trace([b[i][j]], "tvm.trace_callback4"))
        s = tvm.create_schedule(c.op)
        f = tvm.build(s, [a, b, c])
        npa = np.array([[1,0,0,0], [0,1,0,0],[0,0,1,0],[0,0,0,1]], dtype=a.dtype)
        npb = np.array([[1,0,0,0], [0,1,0,0],[0,0,1,0],[0,0,0,1]], dtype=a.dtype)
        xnd = tvm.nd.array(npa)
        ynd = tvm.nd.array(npb)
        znd = tvm.nd.array(np.zeros((n,n), dtype=c.dtype))
        f(xnd, ynd, znd)
        assert(np.array_equal(znd.asnumpy(), npa + npb))

    for t in ["float64", "float32", "int64", "int32"]:
        check_expr_sum_custom(t)

def test_trace_can_change_traced_value_int():
    @tvm.register_func("tvm.trace_change_int_first")
    def trace_buffer(x):
        return 13

    @tvm.register_func("tvm.trace_change_int_second")
    def trace_buffer(x):
        return 14

    def check_assign(dtype):
        n = 4
        x = tvm.placeholder((n,), name="X", dtype=dtype)
        y = tvm.compute(x.shape, lambda i: tvm.trace([x[i]], "tvm.trace_change_int_first"))
        z = tvm.compute(x.shape, lambda i: tvm.trace([y[i]], "tvm.trace_change_int_second"))
        s = tvm.create_schedule(z.op)
        f = tvm.build(s, [x, y, z], "llvm")

        xnd = tvm.nd.array(np.ones((n,), dtype=x.dtype))
        ynd = tvm.nd.array(np.zeros((n,), dtype=y.dtype))
        znd = tvm.nd.array(np.zeros((n,), dtype=z.dtype))
        f(xnd, ynd, znd)
        check_array_first = np.array([13, 13, 13, 13])
        check_array_second = np.array([14, 14, 14, 14])
        assert(np.array_equal(ynd.asnumpy(), check_array_first))
        assert(np.array_equal(znd.asnumpy(), check_array_second))

    for t in ["int64", "int32"]:
        check_assign(t)

def test_trace_can_change_traced_value_float():
    @tvm.register_func("tvm.trace_change_float_first")
    def trace_buffer(x):
        return 13.0

    @tvm.register_func("tvm.trace_change_float_second")
    def trace_buffer(x):
        return 14.0

    def check_assign(dtype):
        n = 4
        x = tvm.placeholder((n,), name="X", dtype=dtype)
        y = tvm.compute(x.shape, lambda i: tvm.trace([x[i]], "tvm.trace_change_float_first"))
        z = tvm.compute(x.shape, lambda i: tvm.trace([y[i]], "tvm.trace_change_float_second"))
        s = tvm.create_schedule(z.op)
        f = tvm.build(s, [x, y, z], "llvm")

        xnd = tvm.nd.array(np.ones((n,), dtype=x.dtype))
        ynd = tvm.nd.array(np.zeros((n,), dtype=y.dtype))
        znd = tvm.nd.array(np.zeros((n,), dtype=z.dtype))
        f(xnd, ynd, znd)
        check_array_first = np.array([13.0, 13.0, 13.0, 13.0])
        check_array_second = np.array([14.0, 14.0, 14.0, 14.0])
        assert(np.array_equal(ynd.asnumpy(), check_array_first))
        assert(np.array_equal(znd.asnumpy(), check_array_second))

    for t in ["float64", "float32"]:
        check_assign(t)

270
if __name__ == "__main__":
271
    test_empty_array()
272
    test_get_global()
273
    test_get_callback_with_node()
274
    test_convert()
275
    test_return_func()
276
    test_byte_array()
277
    test_ctx()
278 279 280 281 282 283 284 285
    test_trace_expr_assign()
    test_trace_expr_sum_generated()
    test_trace_expr_sum_custom()
    test_trace_expr_sum_args()
    test_trace_default_action()
    test_trace_can_change_traced_value_int()
    test_trace_can_change_traced_value_float()