test_forward.py 84.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
# pylint: disable=import-self, invalid-name, unused-argument
"""
Tensorflow testcases
====================
This article is a test script to test tensorflow operator with Relay.
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import graph_util
from tensorflow.python.ops import nn_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.ops import init_ops
36
from distutils.version import LooseVersion
37 38
import tvm
from tvm import relay
39 40 41 42 43 44 45 46 47 48
import tvm.relay.testing.tf as tf_testing

#######################################################################
# Generic run functions for TVM & tensorflow
# ------------------------------------------
def convert_to_list(x):
    if not isinstance(x, list):
        x = [x]
    return x

49 50
def run_tvm_graph(graph_def, input_data, input_node, num_output=1,
                  target='llvm', out_names=None, opt_level=3):
51 52 53 54 55 56 57
    """ Generic function to compile on relay and execute on tvm """
    input_data = convert_to_list(input_data)
    input_node = convert_to_list(input_node)

    layout = None
    if target == "cuda":
        layout = "NCHW"
58 59 60
    target_host = None

    shape_dict = {e: i.shape for e, i in zip(input_node, input_data)}
61

62
    mod, params = relay.frontend.from_tensorflow(graph_def,
63 64 65
                                                 layout=layout,
                                                 shape=shape_dict,
                                                 outputs=out_names)
66
    with relay.build_config(opt_level=opt_level):
67
        graph, lib, params = relay.build(mod, target, target_host, params)
68 69 70 71 72

    ctx = tvm.context(target, 0)
    from tvm.contrib import graph_runtime
    m = graph_runtime.create(graph, lib, ctx)
    # set inputs
73 74
    for e, i in zip(input_node, input_data):
        m.set_input(e, tvm.nd.array(i))
75 76 77 78 79

    m.set_input(**params)
    # execute
    m.run()
    # get outputs
80 81
    assert out_names is None or num_output == len(out_names), (
        "out_names: {} num_output: {}".format(out_names, num_output))
82
    tvm_output_list = [m.get_output(i).asnumpy() for i in range(num_output)]
83 84 85 86 87 88 89 90
    return tvm_output_list

def run_tf_graph(sess, input_data, input_node, output_node):
    """ Generic function to execute tensorflow """
    input_data = convert_to_list(input_data)
    input_node = convert_to_list(input_node)
    output_node = convert_to_list(output_node)

91
    tensor = [sess.graph.get_tensor_by_name(output_name) for output_name in output_node]
92

93
    input_dict = {e: input_data[i] for i, e in enumerate(input_node)}
94 95 96 97 98

    output_data = sess.run(tensor, input_dict)
    return output_data


99 100
def compare_tf_with_tvm(in_data, in_name, out_name, init_global_variables=False,
                        no_gpu=False, opt_level=3):
101
    """Generic function to generate and compare tensorflow and TVM output"""
102 103
    def name_without_num(name):
        return name.split(':')[0] if ":" in name else name
104 105

    out_name = convert_to_list(out_name)
106
    out_node = [name_without_num(name) for name in out_name]
107 108 109

    in_data = convert_to_list(in_data)
    in_name = convert_to_list(in_name)
110
    in_node = [name_without_num(name) for name in in_name]
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    with tf.Session() as sess:
        if init_global_variables:
            sess.run(variables.global_variables_initializer())
        final_graph_def = tf.graph_util.convert_variables_to_constants(
            sess,
            sess.graph.as_graph_def(add_shapes=True),
            out_node,
            )
        tf_output = run_tf_graph(sess, in_data, in_name, out_name)

        for device in ["llvm", "cuda"]:
            ctx = tvm.context(device, 0)
            if not ctx.exist:
                print("Skip because %s is not enabled" % device)
                continue
            if no_gpu and device == 'cuda':
                continue

129 130 131
            tvm_output = run_tvm_graph(final_graph_def, in_data, in_node,
                                       target=device, out_names=out_name,
                                       num_output=len(out_name), opt_level=opt_level)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
            # since the names from tensorflow and relay runs are not exactly same,
            # first len(tf_output) will be compared
            for i in range(len(tf_output)):
                tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5)

        sess.close()

def is_gpu_available():
    from tensorflow.python.client import device_lib
    local_device_protos = device_lib.list_local_devices()
    gpu_list = [x.name for x in local_device_protos if x.device_type == 'GPU']
    if len(gpu_list) > 0:
        print("Tensorflow GPU:", gpu_list)
        return True
    else:
        return False

#######################################################################
# Pooling
# -------
def _test_pooling_iteration(input_shape, **kwargs):
    """ One iteration of pool operation with given shapes and attributes """

    x = -np.arange(
        np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=input_shape, dtype='float32')
        nn_ops.pool(in_data, **kwargs)

        if kwargs['pooling_type'] == 'MAX':
            out_name = 'max_pool:0'
        else:
            out_name = 'avg_pool:0'

        compare_tf_with_tvm(x, 'Placeholder:0', out_name)

def _test_pooling(input_shape, **kwargs):
    _test_pooling_iteration(input_shape, **kwargs)

172
    if is_gpu_available() and (len(input_shape) == 4):
173
        input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)]
174
        kwargs['data_format'] = 'NCHW'
175 176 177 178 179 180
        _test_pooling_iteration(input_shape, **kwargs)

def test_forward_pooling():
    """ Pooling """

    for pool_type in ['AVG', 'MAX']:
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        _test_pooling(input_shape=[2, 9, 10, 2],
                      window_shape=[1, 1],
                      padding='SAME',
                      pooling_type=pool_type,
                      dilation_rate=[1, 1],
                      strides=[1, 1])

        _test_pooling(input_shape=[2, 10, 9, 2],
                      window_shape=[1, 1],
                      padding='SAME',
                      pooling_type=pool_type,
                      dilation_rate=[1, 1],
                      strides=[1, 1])

        _test_pooling(input_shape=[2, 9, 10, 2],
                      window_shape=[2, 1],
                      padding='SAME',
                      pooling_type=pool_type,
                      dilation_rate=[1, 1],
                      strides=[1, 1])

        _test_pooling(input_shape=[2, 10, 9, 2],
                      window_shape=[2, 3],
                      padding='SAME',
                      pooling_type=pool_type,
                      dilation_rate=[1, 1],
                      strides=[2, 1])

        # Tests involving SpaceToBatchND
        _test_pooling(input_shape=[1, 1, 2, 1],
                      window_shape=[1, 1],
                      padding='VALID',
                      pooling_type=pool_type,
                      dilation_rate=[1, 2])

        _test_pooling(input_shape=[1, 2, 1],
                      window_shape=[1],
                      padding='VALID',
                      pooling_type=pool_type,
                      dilation_rate=[2])
221

222 223 224 225
#######################################################################
# Convolution
# -----------

226
def _test_convolution(opname, tensor_in_sizes, filter_in_sizes,
227 228 229
                      dilations, strides, padding, data_format):
    """ One iteration of convolution with given shapes and attributes """

230 231
    total_size_1 = np.prod(tensor_in_sizes)
    total_size_2 = np.prod(filter_in_sizes)
232 233 234 235 236 237 238 239
    # Initializes the input tensor with array containing incrementing
    # numbers from 1.
    data_array = [f * 1.0 for f in range(1, total_size_1 + 1)]
    filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)]

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32')
        in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype='float32')
240 241 242 243 244 245
        if data_format == 'NHWC':
            strides = [1] + strides + [1]
            dilations = [1] + dilations + [1]
        else:
            strides = [1, 1] + strides
            dilations = [1, 1] + dilations
246

247 248 249 250 251 252 253
        if opname == 'conv':
            nn_ops.conv2d(in_data,
                          in_filter,
                          strides=strides,
                          dilations=dilations,
                          padding=padding,
                          data_format=data_format)
254

255 256 257 258 259 260 261 262 263 264 265 266
            compare_tf_with_tvm(np.reshape(data_array, tensor_in_sizes).astype('float32'),
                                'Placeholder:0', 'Conv2D:0')
        else:
            nn_ops.depthwise_conv2d_native(in_data,
                          in_filter,
                          strides=strides,
                          dilations=dilations,
                          padding=padding,
                          data_format=data_format)

            compare_tf_with_tvm(np.reshape(data_array, tensor_in_sizes).astype('float32'),
                                'Placeholder:0', 'DepthwiseConv2dNative:0')
267 268 269

def test_forward_convolution():
    if is_gpu_available():
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        _test_convolution('conv', [4, 176, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NCHW')
        _test_convolution('conv', [4, 19, 17, 17], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NCHW')
        _test_convolution('conv', [4, 124, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NCHW')
        _test_convolution('conv', [4, 12, 17, 17], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NCHW')
        _test_convolution('depthwise', [4, 176, 8, 8], [1, 1, 176, 1], [1, 1], [1, 1], 'SAME', 'NCHW')
        _test_convolution('depthwise', [4, 19, 17, 17], [3, 3, 19, 1], [1, 1], [2, 2], 'VALID', 'NCHW')
        _test_convolution('depthwise', [4, 124, 17, 17], [1, 1, 124, 1], [1, 1], [1, 1], 'SAME', 'NCHW')
        _test_convolution('depthwise', [4, 12, 17, 17], [3, 3, 12, 1], [1, 1], [2, 2], 'VALID', 'NCHW')

    _test_convolution('conv', [4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], 'SAME', 'NHWC')
    _test_convolution('conv', [4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], 'VALID', 'NHWC')
    _test_convolution('conv', [4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], 'SAME', 'NHWC')
    _test_convolution('conv', [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], 'VALID', 'NHWC')
    _test_convolution('depthwise', [4, 8, 8, 176], [1, 1, 176, 1], [1, 1], [1, 1], 'SAME', 'NHWC')
    _test_convolution('depthwise', [4, 17, 17, 19], [3, 3, 19, 1], [1, 1], [2, 2], 'VALID', 'NHWC')
    _test_convolution('depthwise', [4, 17, 17, 124], [1, 1, 124, 1], [1, 1], [1, 1], 'SAME', 'NHWC')
    _test_convolution('depthwise', [4, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], 'VALID', 'NHWC')

#######################################################################
# BiasAdd
# -----------
def _test_biasadd(tensor_in_sizes, data_format):
    """ One iteration of biasadd with given shapes and attributes """

    total_size_1 = 1
    for s in tensor_in_sizes:
        total_size_1 *= s
    tensor_bias_sizes = [tensor_in_sizes[1]] if data_format == 'NCHW' else [tensor_in_sizes[3]]
    total_size_2 = tensor_bias_sizes[0]
    # Initializes the input tensor with array containing incrementing
    # numbers from 1.
    data_array = [f * 1.0 for f in range(1, total_size_1 + 1)]
    bias_array = [f * 1.0 for f in range(1, total_size_2 + 1)]

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype='float32')
        in_bias = constant_op.constant(bias_array, shape=tensor_bias_sizes, dtype='float32')
        nn_ops.bias_add(in_data,
                        in_bias,
                        data_format=data_format)

        compare_tf_with_tvm(np.reshape(data_array, tensor_in_sizes).astype('float32'),
                            'Placeholder:0', 'BiasAdd:0')

def test_forward_biasadd():
    if is_gpu_available():
        _test_biasadd([4, 176, 8, 8], 'NCHW')
        _test_biasadd([1, 100, 1, 1], 'NCHW')
        _test_biasadd([4, 19, 17, 17], 'NCHW')
        _test_biasadd([4, 124, 3, 3], 'NCHW')

    _test_biasadd([4, 8, 8, 176], 'NHWC')
    _test_biasadd([1, 1, 1, 100], 'NHWC')
    _test_biasadd([4, 17, 17, 19], 'NHWC')
    _test_biasadd([4, 3, 3, 124], 'NHWC')
325 326

#######################################################################
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
# SpaceToBatchND
# --------------
def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype='int32'):
    data = np.random.uniform(0, 5, size=input_shape).astype(dtype)

    with tf.Graph().as_default():
        in_data = tf.placeholder(shape=input_shape, dtype=dtype)
        out = tf.space_to_batch_nd(in_data, block_shape, paddings)

        compare_tf_with_tvm(data, in_data.name, out.name)

def test_forward_space_to_batch_nd():
    # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/space-to-batch-n-d
    _test_space_to_batch_nd(
        input_shape=[1, 2, 2, 1],
        block_shape=[2, 2],
        paddings=[[0, 0], [0, 0]]
    )

    _test_space_to_batch_nd(
        input_shape=[1, 2, 2, 3],
        block_shape=[2, 2],
        paddings=[[0, 0], [0, 0]]
    )

    _test_space_to_batch_nd(
        input_shape=[1, 4, 4, 1],
        block_shape=[2, 2],
        paddings=[[0, 0], [0, 0]]
    )

    _test_space_to_batch_nd(
        input_shape=[2, 2, 4, 1],
        block_shape=[2, 2],
        paddings=[[0, 0], [2, 0]],
        dtype='int64'
    )

    # pylint: disable=line-too-long
    # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/spacetobatch_op_test.py
    _test_space_to_batch_nd(
        input_shape=[2, 3],
        block_shape=[2],
        paddings=[[1, 0]],
        dtype='float32'
    )

    _test_space_to_batch_nd(
        input_shape=[2, 3, 2],
        block_shape=[2],
        paddings=[[1, 0]],
        dtype='float64'
    )

#######################################################################
# BatchToSpaceND
# --------------
def _test_batch_to_space_nd(input_shape, block_shape, crops, dtype='int32'):
    data = np.random.uniform(0, 5, size=input_shape).astype(dtype)

    with tf.Graph().as_default():
        in_data = tf.placeholder(shape=input_shape, dtype=dtype)
        out = tf.batch_to_space_nd(in_data, block_shape, crops)

        compare_tf_with_tvm(data, in_data.name, out.name)

def test_forward_batch_to_space_nd():
    # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d
    _test_batch_to_space_nd(
        input_shape=[4, 1, 1, 1],
        block_shape=[2, 2],
        crops=[[0, 0], [0, 0]]
    )

    _test_batch_to_space_nd(
        input_shape=[4, 1, 1, 3],
        block_shape=[2, 2],
        crops=[[0, 0], [0, 0]]
    )

    _test_batch_to_space_nd(
        input_shape=[4, 2, 2, 1],
        block_shape=[2, 2],
        crops=[[0, 0], [0, 0]]
    )

    _test_batch_to_space_nd(
        input_shape=[8, 1, 3, 1],
        block_shape=[2, 2],
        crops=[[0, 0], [2, 0]],
        dtype='int64'
    )

    # pylint: disable=line-too-long
    # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/batchtospace_op_test.py
    _test_batch_to_space_nd(
        input_shape=[18, 2, 1, 2],
        block_shape=[2, 3],
        crops=[[1, 1], [0, 0]],
        dtype='float32'
    )

    _test_batch_to_space_nd(
        input_shape=[20, 5, 8, 7],
        block_shape=[2, 2],
        crops=[[1, 1], [1, 1]],
        dtype='float64'
    )

#######################################################################
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
# Reshape
# -------

def _test_reshape(data, out_shape):
    """ One iteration of reshape operation with given data and out shape """

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        array_ops.reshape(in_data, out_shape)

        compare_tf_with_tvm(data, 'Placeholder:0', 'Reshape:0')

def test_forward_reshape():
    _test_reshape(np.arange(6.0), [2, 3])
    _test_reshape(np.arange(6), [-1, 2])
    _test_reshape(np.arange(6), [3, -1])
    _test_reshape(np.arange(6), [-1])

#######################################################################
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
# DepthToSpace
# ------------

def _test_depthtospace(data, block_size):
    """ One iteration of depth_to_space operation with given data and block size """

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        array_ops.depth_to_space(in_data, block_size)

        compare_tf_with_tvm(data, 'Placeholder:0', 'DepthToSpace:0')

def test_forward_depthtospace():
    _test_depthtospace(np.random.normal(size=[1, 32, 32, 4]), 2)
    _test_depthtospace(np.random.normal(size=[1, 16, 8, 32]), 4)


473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
#######################################################################
# Squeeze
# -------

def _test_squeeze(data, squeeze_dims=None):
    """ One iteration of squeeze """

    if squeeze_dims is None:
        squeeze_dims = []

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)

        if squeeze_dims:
            array_ops.squeeze(in_data, squeeze_dims)
        else:
            array_ops.squeeze(in_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'Squeeze:0')

def test_forward_squeeze():
    """ Squeeze """

    # Nothing to squeeze.
    _test_squeeze(np.arange(2).reshape((2)))
    _test_squeeze(np.arange(6).reshape((2, 3)))

    # Squeeze the middle element away.
    _test_squeeze(np.arange(4).reshape((2, 1, 2)))

    # Squeeze on both ends.
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)))

    # Positive squeeze dim index.
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [2, 4])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0, 4, 2])

    # Negative squeeze dim index.
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-1])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5])
    _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5, -1])

#######################################################################
# ConcatV2
# --------

520
def _test_concat_v2(shape1, shape2, dim):
521 522 523
    """ One iteration of ConcatV2 """

    with tf.Graph().as_default():
524 525 526 527
        dtype = 'float32'
        in1 = tf.placeholder(shape=shape1, dtype=dtype, name='in1')
        in2 = tf.placeholder(shape=shape2, dtype=dtype, name='in2')
        array_ops.concat_v2([in1, in2], dim)
528

529 530
        np_data1 = np.random.uniform(size=shape1).astype(dtype)
        np_data2 = np.random.uniform(size=shape2).astype(dtype)
531

532
        compare_tf_with_tvm([np_data1, np_data2], ['in1:0', 'in2:0'], 'ConcatV2:0')
533

534 535 536
def test_forward_concat_v2():
    if tf.__version__ < LooseVersion('1.4.1'):
        return
537

538 539 540 541 542
    _test_concat_v2([2, 3], [2, 3], 0)
    _test_concat_v2([10, 3, 5], [2, 3, 5], 0)
    _test_concat_v2([2, 3], [2, 3], 1)
    _test_concat_v2([5, 8], [5, 4], 1)
    _test_concat_v2([2, 8, 5], [2, 8, 6], -1)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

#######################################################################
# Sigmoid
# -------

def _test_sigmoid(data):
    """ One iteration of sigmoid """

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        sigmoid_out = math_ops.sigmoid(in_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'Sigmoid:0')

def test_forward_sigmoid():
    """ Sigmoid """

    _test_sigmoid(np.random.uniform(size=(3, 4, 4, 3)).astype('float32'))

#######################################################################
# Argmin/Argmax
# -------------

def _test_argx(func, data, **kwargs):

    with tf.Graph().as_default():
        inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0")
        func(inp, name="argx0", output_type=tf.int32, **kwargs)

        compare_tf_with_tvm(data, 'c0:0', 'argx0:0')

def test_forward_argminmax():
575 576
    for axis in [None, 0, 1, 2]:
        data = np.random.uniform(size=(8, 4, 9)).astype('float32')
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        _test_argx(tf.argmax, data=data, axis=axis)
        _test_argx(tf.argmin, data=data, axis=axis)

#######################################################################
# Reduce
# ------

def _test_reduce(func, data, **kwargs):
    """ One iteration of a reduce operation"""

    with tf.Graph().as_default():
        inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0")
        func(inp, name="reducex0", **kwargs)

        compare_tf_with_tvm(data, 'c0:0', 'reducex0:0')

def test_forward_reduce():
594
    data = np.random.uniform(size=(8, 4, 9)).astype('float32')
595 596
    _test_reduce(tf.reduce_sum, data=data)
    _test_reduce(tf.reduce_sum, data=data, axis=0)
597
    _test_reduce(tf.reduce_sum, data=data, axis=(0, 1))
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624


#######################################################################
# Variable
# --------

def _test_variable(data):
    """ One iteration of a variable """

    tf.reset_default_graph()
    input_op = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
    input_tensor = array_ops.reshape(input_op, data.shape)

    size = input_tensor.shape.dims[1]
    with variable_scope.variable_scope("linear", reuse=None):
        w = variable_scope.get_variable(
            "w", shape=[size, size], dtype=input_tensor.dtype)
    math_ops.matmul(input_tensor, w)

    compare_tf_with_tvm(data, 'Placeholder:0', 'MatMul:0', init_global_variables=True)

def test_forward_variable():
    """Variable type op test"""
    _test_variable(np.random.uniform(size=(32, 100)).astype('float32'))


#######################################################################
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
# MatMul
# ------

def _test_matmul(i, j, k, dtype, outer=None):
    """ One iteration of matmul """

    A_shape_init = [i, j]
    B_shape_init = [j, k]

    for transpose_a in [False, True]:
        for transpose_b in [False, True]:
            outer = outer or []
            A_shape = outer + (A_shape_init[::-1] if transpose_a else A_shape_init)
            B_shape = outer + (B_shape_init[::-1] if transpose_b else B_shape_init)

            with tf.Graph().as_default():
                A = tf.placeholder(shape=A_shape, dtype=dtype, name='A')
                B = tf.placeholder(shape=B_shape, dtype=dtype, name='B')
                result = tf.matmul(A, B, transpose_a=transpose_a, transpose_b=transpose_b)

                A_np = np.random.uniform(high=5.0, size=A_shape).astype(dtype)
                B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype)
                compare_tf_with_tvm([A_np, B_np], [A.name, B.name], result.name)

def test_forward_matmul():
    """ Matmul op test"""
    _test_matmul(1, 3, 6, 'int32')
    _test_matmul(5, 3, 1, 'float64')
    # TODO non-empty outer requires BatchMatMul (BatchMatMulV2 for some cases?) support


#######################################################################
657 658 659 660
# StridedSlice
# ------------

def _test_stridedslice(ip_shape, begin, end, stride, dtype,
661 662
                       begin_mask=0, end_mask=0, new_axis_mask=0,
                       shrink_axis_mask=0, ellipsis_mask=0):
663 664 665 666 667
    """ One iteration of a Stridedslice """

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.strided_slice(in_data, begin, end, stride, begin_mask=begin_mask,
668 669 670
                     end_mask=end_mask, new_axis_mask=new_axis_mask,
                     shrink_axis_mask=shrink_axis_mask,
                     ellipsis_mask=ellipsis_mask, name="strided_slice")
671 672 673 674 675 676 677
    np_data = np.random.uniform(size=ip_shape).astype(dtype)

    compare_tf_with_tvm(np_data, 'in_data:0', 'strided_slice:0')

def test_forward_stridedslice():
    '''test StridedSlice'''

678
    _test_stridedslice((2), [1], [1], [1], 'float32', shrink_axis_mask=1)
679 680 681 682 683 684
    _test_stridedslice((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1], 'float32')
    _test_stridedslice((3, 4, 3), [1, 0], [4, 3], [2, 1], 'float32', ellipsis_mask=8)
    _test_stridedslice((3, 4, 3), [1, 0], [4, 2], [2, 1], 'float32', ellipsis_mask=2)
    _test_stridedslice((3, 4, 5, 3), [1, 0], [4, 2], [2, 1], 'float32', ellipsis_mask=2)
    _test_stridedslice((3, 4, 5, 3), [1, 0, 1], [4, 2, 2], [2, 1, 1], 'float32', ellipsis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 2], [2, 1, 1], 'float32', new_axis_mask=5)
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    _test_stridedslice((3, 4, 3), [1, 1, 1], [4, 4, 1], [2, 1, 1], 'float32', ellipsis_mask=2,
                       new_axis_mask=4)
    _test_stridedslice((6, 4, 5), [1, 1, 1], [6, 3, 4], [2, 1, 1], 'float32', ellipsis_mask=2,
                       new_axis_mask=5)
    _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=4,
                       new_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=2,
                       new_axis_mask=3)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 1], [2, 1, 1], 'float32', ellipsis_mask=2,
                       new_axis_mask=3)
    _test_stridedslice((3, 4, 3), [1, 1, 2], [4, 4, 3], [2, 1, 1], 'float32', ellipsis_mask=2,
                       new_axis_mask=2)
    _test_stridedslice((3, 4), [1, 0], [4, 4], [1, 1], 'float32', shrink_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=2,
                       new_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=1,
                       new_axis_mask=2)
    _test_stridedslice((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], 'float32', shrink_axis_mask=2,
                       new_axis_mask=1)
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0], [2, 3], [1, 1], 'float32', shrink_axis_mask=5,
                       new_axis_mask=1)
706
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1],
707 708
                       'float32', shrink_axis_mask=5, new_axis_mask=1, ellipsis_mask=2,
                       begin_mask=8, end_mask=8)
709
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1],
710 711
                       'float32', shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2,
                       begin_mask=5, end_mask=5)
712
    _test_stridedslice((3, 4, 5, 4, 5, 6), [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1],
713 714
                       'float32', shrink_axis_mask=16, new_axis_mask=1, ellipsis_mask=2,
                       begin_mask=5, end_mask=5)
715
    _test_stridedslice((3, 4, 5, 4, 5, 6), [1, 2, 0, -3], [4, 5, 3, 3], [2, 2, 1, 1],
716 717
                       'float32', shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2,
                       begin_mask=5, end_mask=8)
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
#######################################################################
# FloorDiv, RealDiv
# -----------------

def _test_forward_divide(ip_shape, dtype):
    np_numer = np.random.uniform(-100, 100, size=ip_shape).astype(dtype)
    np_denomin = np.random.uniform(1, 100, size=ip_shape).astype(dtype)
    tf.reset_default_graph()
    numerator = tf.placeholder(dtype, ip_shape, name="numer")
    denominator = tf.placeholder(dtype, ip_shape, name="denomin")
    tf.math.divide(numerator, denominator, name='RealDiv')
    compare_tf_with_tvm([np_numer, np_denomin], ['numer:0', 'denomin:0'], 'RealDiv:0')

def _test_forward_floordiv(ip_shape, dtype):
    np_numer = np.random.uniform(-100, 100, size=ip_shape).astype(dtype)
    tf.reset_default_graph()
    numerator = tf.placeholder(dtype, ip_shape, name="numer")
    tf.math.floordiv(numerator, tf.constant(5, dtype=dtype), name='FloorDiv')
    compare_tf_with_tvm([np_numer], ['numer:0'], 'FloorDiv:0')

def test_forward_divide():
    '''test FloorDiv, RealDiv'''
    _test_forward_divide((4,), 'int32')
    _test_forward_divide((4, 3, 7), 'float32')
    _test_forward_floordiv((4, 3, 7), 'float32')

745 746

#######################################################################
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
# TruncateMod
# -----------
def _test_forward_truncatemod(ip_shape, dtype):
    np_data_1 = np.random.uniform(-100, 100, size=ip_shape).astype(dtype)
    np_data_2 = np.random.uniform(1, 10, size=ip_shape).astype(dtype)
    tf.reset_default_graph()
    in_data_1 = tf.placeholder(dtype, ip_shape, name="in_data_1")
    in_data_2 = tf.placeholder(dtype, ip_shape, name="in_data_2")
    tf.truncatemod(in_data_1, in_data_2, name='truncatemod')
    compare_tf_with_tvm([np_data_1, np_data_2], ['in_data_1:0', 'in_data_2:0'], 'truncatemod:0')

def test_forward_truncatemod():
    '''test TruncateMod'''
    _test_forward_truncatemod((4, 3, 7), 'int32')


#######################################################################
# Gather, GatherV2, GatherNd
# --------------------------
766 767

def _test_gather(ip_shape, indice_shape, indice_value, axis, dtype):
768
    """ One iteration of a GatherV2 """
769 770 771 772

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    indices = tf.placeholder("int32", indice_shape, name="indices")
773
    out = tf.gather(in_data, indices, axis=axis)
774
    np_data = np.random.uniform(1, 10, size=ip_shape).astype(dtype)
775 776 777 778 779 780 781 782 783 784

    def _fill_indices(indice_value):
        indices = np.array(ip_shape, dtype=dtype)
        if isinstance(indice_value, int):
            indices = np.array([indice_value], dtype='int32')
        else:
            indices = np.asarray(indice_value, dtype='int32')
        return indices
    np_indices = _fill_indices(indice_value)

785
    compare_tf_with_tvm([np_data, np_indices], ['in_data:0', 'indices:0'], out.name)
786 787

def test_forward_gather():
788
    '''test Gather/GatherV2 layer'''
789 790
    _test_gather((4,), (1,), 1, 0, 'int32')
    _test_gather((4,), (1,), 1, 0, 'float32')
791
    _test_gather((1, 4), (1,), [0], 0, 'int32')
792 793 794 795
    _test_gather((4,), (1, 2, 2), [[[1, 0], [0, 1]]], 0, 'float32')
    _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 0, 'int32')
    _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 1, 'int32')
    _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 0, 'float32')
796 797 798
    _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 0, 'int32')
    _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 2, 'int32')
    _test_gather((4, 3, 5, 6), (1, 4), [[2, 1, 0, 0]], 0, 'float32')
799

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
def test_forward_gather_nd():
    """test operator GatherNd"""
    np_data = np.random.uniform(1, 100, size=(2, 2)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (2, 2), name="in_data")
    tf.gather_nd(in_data, indices=[[1, 0], [0, 1]], name="gather_nd")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'gather_nd:0')


#######################################################################
# BiasAdd
# -------
def test_forward_bias_add():
    """test Op BiasAdd"""
    def check_bias_add(lh_shpae, rh_shape, dtype):
        tf.reset_default_graph()
        lh_data = np.random.uniform(size=lh_shpae).astype(dtype)
        rh_data = np.random.uniform(size=rh_shape).astype(dtype)
        lft_data = tf.placeholder(dtype, name="lft_data")
        rgt_data = tf.placeholder(dtype, name="rgt_data")
        tf.nn.bias_add(lft_data, rgt_data, name="BiasAdd")
        compare_tf_with_tvm([lh_data, rh_data], ['lft_data:0', 'rgt_data:0'], 'BiasAdd:0')

    check_bias_add((10, 8, 16, 32), (32,), dtype="int32")
    check_bias_add((10, 20), (20,), dtype="float32")


827 828 829 830 831 832 833 834 835 836
#######################################################################
# Split
# -----

def _test_split(in_shape, axis, num_or_size_splits, dtype):
    np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype)

    """ One iteration of a Split """
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
837 838
    num_split = len(num_or_size_splits) if isinstance(num_or_size_splits, list)\
                else num_or_size_splits
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    tf.split(in_data, num_or_size_splits, axis=axis)

    compare_tf_with_tvm([np_data], ['in_data:0'], [f'split:{n}' for n in range(num_split)])

    # and now test together with concat
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    splitted = tf.split(in_data, num_or_size_splits, axis=axis)
    tf.concat(splitted, axis)

    compare_tf_with_tvm([np_data], 'in_data:0', 'concat:0')

def test_forward_split():
    '''test split layer'''
    # rank 1
    _test_split((3,), 0, 1, 'float32')
    _test_split((3,), 0, 3, 'float32')
    _test_split((6,), 0, 3, 'float32')
    # rank 2
    _test_split((6, 2), 0, 3, 'float32')
    _test_split((2, 6), 1, 6, 'float32')
    # rank 3
    _test_split((6, 2, 4), 0, 2, 'int32')
    _test_split((2, 6, 4), 1, 3, 'float32')
    _test_split((2, 4, 6), 2, 1, 'float32')
    # rank 4
    _test_split((6, 1, 3, 5), 0, 3, 'float32')
    _test_split((1, 6, 3, 5), 1, 3, 'float32')
    _test_split((1, 3, 6, 5), 2, 3, 'float32')
    _test_split((1, 3, 5, 6), 3, 3, 'float32')
    # split along negative axis
    _test_split((6, 1, 3, 5), -4, 3, 'float32')
    _test_split((1, 6, 3, 5), -3, 3, 'float32')
    _test_split((1, 3, 6, 5), -2, 3, 'float32')
    _test_split((1, 3, 5, 6), -1, 3, 'float32')
    # size_splits list
    _test_split((6,), 0, [1, 2, 3], 'int32')
    _test_split((3, 6, 4), -2, [1, 4, 1], 'float32')


879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
######################################################################
# TopKV2
# ------

def _test_forward_top_k_v2(in_shape, k):
    np_data = np.random.uniform(-100, 100, size=in_shape).astype("float32")
    tf.reset_default_graph()
    in_data = tf.placeholder("float32", in_shape, name="in_data")
    tf.math.top_k(in_data, k, name='TopK')
    compare_tf_with_tvm([np_data], ['in_data:0'], 'TopK:0')

def test_forward_top_k_v2():
    _test_forward_top_k_v2((3,), 1)
    _test_forward_top_k_v2((3,), 3)
    _test_forward_top_k_v2((3, 5, 7), 3)
    _test_forward_top_k_v2((3, 5, 7), 3)


897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
#######################################################################
# Unstack
# -------

def _test_unstack(ip_shape, axis, dtype):
    np_data = np.random.uniform(-5, 5, size=ip_shape).astype(dtype)

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.unstack(in_data, axis=axis)

    compare_tf_with_tvm([np_data], ['in_data:0'], [f'unstack:{n}' for n in range(ip_shape[axis])])

    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.stack(tf.unstack(in_data, axis=axis), axis=axis)

    compare_tf_with_tvm([np_data], ['in_data:0'], 'stack:0')

def test_forward_unstack():
    '''test unstack layer'''
    _test_unstack((6,), 0, 'int32')
919
    _test_unstack((2, 6), 1, 'float64')
920
    # negative axis
921 922
    _test_unstack((1, 4), -1, 'int32')
    _test_unstack((3, 6, 4), -2, 'float32')
923

924 925

#######################################################################
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
# Tile
# ----

def _test_tile(in_shape, multiples, dtype):
    np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    tf.tile(in_data, multiples=multiples, name="tile")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'tile:0')

def test_forward_tile():
    '''test Tile'''
    _test_tile((2, ), (3, ), "int32")
    _test_tile((2, 2), (2, 3), "float32")
    _test_tile((2, 4, 6), (6, 7, 8), "float64")


#######################################################################
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
# ClipByValue
# -----------

def _test_forward_clip_by_value(ip_shape, clip_value_min, clip_value_max, dtype):
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, ip_shape, name="in_data")
    tf.clip_by_value(in_data, clip_value_min, clip_value_max, name="ClipByValue")
    np_data = np.random.uniform(-100, 100, size=ip_shape).astype(dtype)
    compare_tf_with_tvm([np_data], ['in_data:0'], 'ClipByValue:0')

def test_forward_clip_by_value():
    '''test ClipByValue op'''
    if tf.__version__ < LooseVersion('1.9'):
        _test_forward_clip_by_value((4,), .1, 5., 'float32')
        _test_forward_clip_by_value((4, 4), 1, 5, 'int32')

#######################################################################
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
# Multi Input to graph
# --------------------

def test_forward_multi_input():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1')
        in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2')
        in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3')
        in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4')

        out1 = tf.add(in1, in2, name='out1')
        out2 = tf.subtract(in3, in4, name='out2')
        out = tf.multiply(out1, out2, name='out')
        in_data = np.arange(9, dtype='int32').reshape([3, 3])

        compare_tf_with_tvm([in_data, in_data, in_data, in_data],
                            ['in1:0', 'in2:0', 'in3:0', 'in4:0'], 'out:0')

#######################################################################
# Multi Output to Graph
# ---------------------

def test_forward_multi_output():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.int32, shape=[3, 3], name='in1')
        in2 = tf.placeholder(tf.int32, shape=[3, 3], name='in2')
        in3 = tf.placeholder(tf.int32, shape=[3, 3], name='in3')
        in4 = tf.placeholder(tf.int32, shape=[3, 3], name='in4')

        out1 = tf.add(in1, in2, name='out1')
        out2 = tf.subtract(in3, in4, name='out2')
        in_data = np.arange(9, dtype='int32').reshape([3, 3])
        in_data = [in_data] * 4
        in_name = ['in1:0', 'in2:0', 'in3:0', 'in4:0']
        out_name = ['out1:0', 'out2:0']
        out_node = [out.strip(':0') for out in out_name]
        in_node = [inp.strip(':0') for inp in in_name]
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        with tf.Session() as sess:
            final_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, sess.graph.as_graph_def(add_shapes=True), out_node,)
            tf_output = run_tf_graph(sess, in_data, in_name, out_name)
            tvm_output = run_tvm_graph(final_graph_def, in_data, in_node, target='llvm',
                                       out_names=out_node, num_output=2)
            for i in range(len(tf_output)):
                tvm.testing.assert_allclose(tf_output[i], tvm_output[i], atol=1e-5, rtol=1e-5)

#######################################################################
1009 1010
# Resize Bilinear, Nearest_Neighbor
# ---------------------------------
1011 1012 1013 1014 1015 1016 1017 1018 1019

def _test_resize_bilinear(in_shape, to_shape, align_corners):
    """ One iteration of resize bilinear """

    data = np.random.uniform(size=in_shape).astype('float32')
    shape_data = np.array(to_shape).astype('int32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
1020 1021
        shape_data = constant_op.constant(
            shape_data, shape=shape_data.shape, dtype=shape_data.dtype)
1022 1023 1024 1025
        tf.image.resize_bilinear(in_data, shape_data, align_corners=align_corners)

        compare_tf_with_tvm(data, 'Placeholder:0', 'ResizeBilinear:0')

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
def _test_resize_bilinear_from_tensor(in_shape, align_corners):
    """ One iteration of resize bilinear with non-constant output shape, requires
        value inference to get proper output shape."""

    data = np.random.uniform(size=in_shape).astype('float32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(
            shape=[in_shape[0], in_shape[1], None, None], dtype=data.dtype)
        to_shape = tf.shape(in_data)[2:]
        tf.image.resize_bilinear(in_data, to_shape, align_corners=align_corners)

        compare_tf_with_tvm(data, 'Placeholder:0', 'ResizeBilinear:0')

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

def _test_resize_nearest_neighbor(in_shape, to_shape):
    """ One iteration of resize nearest neighbor """

    data = np.random.uniform(size=in_shape).astype('float32')
    shape_data = np.array(to_shape).astype('int32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        shape_data = constant_op.constant(
            shape_data, shape=shape_data.shape, dtype=shape_data.dtype)
        tf.image.resize_nearest_neighbor(in_data, shape_data, name='resize_nearest_neighbor')

        compare_tf_with_tvm(data, 'Placeholder:0', 'resize_nearest_neighbor:0')


def test_forward_resize():
    """ Resize Bilinear, Nearest_Neighbor """
1058 1059 1060

    _test_resize_bilinear((4, 16, 32, 32), [50, 50], False)
    _test_resize_bilinear((6, 32, 64, 64), [20, 20], True)
1061 1062
    _test_resize_bilinear_from_tensor((4, 16, 32, 32), False)
    _test_resize_bilinear_from_tensor((6, 32, 50, 50), True)
1063 1064
    _test_resize_nearest_neighbor((6, 32, 64, 64), [20, 20])

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

#######################################################################
# BroadcastTo
# -----------

def _test_broadcast_to(in_shape, to_shape):
    """ One iteration of broadcast_to"""

    data = np.random.uniform(size=in_shape).astype('float32')
    shape_data = np.array(to_shape).astype('int32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        shape_data = constant_op.constant(
            shape_data, shape=shape_data.shape, dtype=shape_data.dtype)
        tf.broadcast_to(in_data, shape_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'BroadcastTo:0', opt_level=0)


def _test_broadcast_to_from_tensor(in_shape):
    """ One iteration of broadcast_to with unknown shape at graph build"""

    data = np.random.uniform(size=in_shape).astype('float32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(
            shape=[None], dtype=data.dtype)

        shape_data = tf.multiply(tf.shape(in_data), 32)
        tf.broadcast_to(in_data, shape_data)

        compare_tf_with_tvm(data, 'Placeholder:0', 'BroadcastTo:0')


def test_forward_broadcast_to():
    """ Resize Bilinear """

    _test_broadcast_to((4, 1, 32, 32), [4, 8, 32, 32])
    _test_broadcast_to((6, 32, 32, 1), [6, 32, 32, 16])
    _test_broadcast_to_from_tensor((1))


#######################################################################
# Fill
# ----

def _test_fill(in_shape):
    """ Use the fill op to create a tensor of ones with non-constant shape."""

    with tf.Graph().as_default():
        tf.ones(shape=in_shape, dtype='float32')
        compare_tf_with_tvm(in_shape, [], 'ones:0', opt_level=1)

def _test_fill_from_tensor(in_shape):
    """ Use the fill op to create a tensor of ones with non-constant shape.
        Some extra ops need to be added here to prevent the graph from
        being fully constant and folded away."""

    data = np.random.uniform(size=in_shape).astype('float32')

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(
            shape=[in_shape[0], in_shape[1], None, None], dtype=data.dtype)

        x = tf.ones(shape=2*tf.shape(in_data), dtype=data.dtype)
        y = tf.math.add(in_data, tf.reduce_mean(x), name='out1')
        compare_tf_with_tvm(data, 'Placeholder:0', 'out1:0')

def test_forward_fill():
    """ Resize Bilinear """

    _test_fill((32))
    _test_fill((6, 32, 64, 64))
    _test_fill_from_tensor((6, 32, 64, 64))
1140

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#######################################################################
# Crop to bounding box
# --------------------

def _test_crop(in_shape, off_h, off_w, tar_h, tar_w):
    """ Crop to bounding box """
    data = np.random.uniform(size=in_shape).astype('float32')
    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
        tf.image.crop_to_bounding_box(in_data, off_h, off_w, tar_h, tar_w)
        compare_tf_with_tvm(data, 'Placeholder:0', 'crop_to_bounding_box/Slice:0')

def test_forward_crop():
    """ Crop to bounding box """
    _test_crop((1, 224, 224, 3), 20, 20, 120, 120)

1157 1158

#######################################################################
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
# CropAndResize
# -------------

def _test_forward_crop_and_resize(img_shape, boxes, box_idx, crop_size, method='bilinear', dtype="float32"):
    image = np.random.uniform(0, 10, size=img_shape).astype(dtype)
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, image.shape, name="in_data")
    tf.image.crop_and_resize(in_data, boxes=boxes, box_ind=box_idx, crop_size=crop_size,
                             method=method, name="crop_and_resize")
    compare_tf_with_tvm([image], ['in_data:0'], 'crop_and_resize:0')

def test_forward_crop_and_resize():
    """ CropAndResize """
    _test_forward_crop_and_resize([1, 11, 11, 3], [[0, 0, 1, 1]], [0], [5, 5])
    _test_forward_crop_and_resize([1, 11, 11, 3], [[0, 0, .9, .9]], [0], [5, 5])
    _test_forward_crop_and_resize([1, 11, 11, 3], [[.1, .2, 1, 1]], [0], [5, 5])
    _test_forward_crop_and_resize([1, 21, 21, 3], [[.2, .3, .7, .9]], [0], [3, 4])
    _test_forward_crop_and_resize([1, 106, 106, 3], [[0.2, 0.4, 0.8, 0.8]], [0], [3, 3])
    _test_forward_crop_and_resize([10, 11, 11, 3],
                                  [[0, 0, 0.9, 0.9], [0.2, 0.2, 0.8, 0.8]],
                                  [0, 1],
                                  [5, 5])
    _test_forward_crop_and_resize([3, 11, 11, 3],
                                  [[0, 0, 0.9, 0.9], [0.2, 0.2, 0.8, 0.8],[0, 0, 1, 1]],
                                  [0, 1, 2],
                                  [3, 3])
    _test_forward_crop_and_resize([3, 11, 11, 3],
                                  [[0, 0, 1, 0.8], [0, 0, 0.9, 0.9], [0, 0, 1, 0.8]],
                                  [2, 1, 0],
                                  [3, 3])


#######################################################################
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
# LSTM
# ----

def _test_lstm_cell(batch_size, num_hidden, num_layers, forget_bias, dtype):
    """ One iteration of a LSTM cell """

    tf.reset_default_graph()
    input_size = num_hidden
    input_data = np.full((batch_size, input_size), 1., dtype=dtype)
    in_state_c = np.full((num_layers, batch_size, num_hidden), 0.1, dtype=dtype)
    in_state_h = np.full((num_layers, batch_size, num_hidden), 0.1, dtype=dtype)

    def _get_tensorflow_output():
        with tf.Session() as sess:
            with variable_scope.variable_scope(
1207
                    "root", initializer=init_ops.constant_initializer(0.5)):
1208 1209
                m0 = array_ops.zeros([batch_size, num_hidden])
                m1 = array_ops.zeros([batch_size, num_hidden])
1210
                x = tf.placeholder(shape=(batch_size, input_size), dtype=dtype)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
                g, ((out_m0, out_m1)) = \
                     tf.contrib.rnn.LSTMBlockCell(num_hidden,
                                                  forget_bias=forget_bias)(x, ((m0, m1)))
                sess.run([variables.global_variables_initializer()])
                res = sess.run([g, out_m0, out_m1], {
                    x.name: np.array([[1., 1.]]),
                    m0.name: 0.1 * np.ones([batch_size, num_hidden]),
                    m1.name: 0.1 * np.ones([batch_size, num_hidden]),
                })
            graph_def = sess.graph.as_graph_def(add_shapes=True)
            final_graph_def = graph_util.convert_variables_to_constants(
                sess,
                graph_def,
                ['root/lstm_cell/LSTMBlockCell'])
            return final_graph_def, res

    graph_def, tf_out = _get_tensorflow_output()
    tvm_output = run_tvm_graph(graph_def, [input_data, in_state_c, in_state_h],
                               ['root/Placeholder', 'root/lstm_cell/LSTMBlockCell_c',
                                'root/lstm_cell/LSTMBlockCell_h'], num_output=2)
    assert isinstance(tvm_output, list)

    out = tvm_output[0]
    out_state = tvm_output[1]
    out_state_tup = np.split(out_state, indices_or_sections=2, axis=1)
    out_state_c = np.reshape(out_state_tup[0], (batch_size, num_hidden))
    out_state_h = np.reshape(out_state_tup[1], (batch_size, num_hidden))
    tvm_out = [out, out_state_c, out_state_h]
    tvm.testing.assert_allclose(tf_out[0], tvm_out[0], rtol=1e-3, atol=1e-3)

def test_forward_lstm():
    '''test LSTM block cell'''
1243
    _test_lstm_cell(1, 2, 1, 0.5, 'float32')
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257



#######################################################################
# Pack
# ---
def _test_pack(axis, shape, **kwargs):

    a = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)
    b = np.arange(np.prod(shape), dtype=np.float32).reshape(shape)

    with tf.Graph().as_default():
        tf_a = array_ops.placeholder(shape=shape, dtype='float32', name='pl_a')
        tf_b = array_ops.placeholder(shape=shape, dtype='float32', name='pl_b')
1258
        tf_c = tf.stack([tf_a, tf_b], axis=axis, **kwargs)
1259 1260
        assert tf_c.op.op_def.name == 'Pack', "tf.stack() is expected to produce 'Pack' operation"

1261
        compare_tf_with_tvm([a, b], ['pl_a:0', 'pl_b:0'], 'stack:0')
1262 1263

def test_forward_pack():
1264 1265 1266
    for axis in range(-3, 3):
        _test_pack(axis, [3, 2, 1])
    for axis in range(-1, 1):
1267 1268 1269
        _test_pack(axis, [3])
    _test_pack(0, [])

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

#######################################################################
# Unpack
# ------
def _test_forward_unpack(in_shape, axis, dtype):
    """test operator Unpack"""
    np_data = np.random.uniform(-100, 100, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    tf.unstack(in_data, axis=axis, name="Unpack")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'Unpack:0')

def test_forward_unpack():
    _test_forward_unpack((3,), 0, 'int32')
    _test_forward_unpack((3,), -1, 'int16')
    _test_forward_unpack((21, 23, 3), 2, 'float32')

#######################################################################
# Range
# -----
def test_forward_range():
    """test operator Range"""
    tf.reset_default_graph()
    tf.range(1, 18, 3, name="range")
    compare_tf_with_tvm([], [], 'range:0')

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
#######################################################################
# Pad
# ---
def _test_pad(input_shape, paddings, mode, **kwargs):
    """ One iteration of pad operation with given shape"""

    x = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape)

    with tf.Graph().as_default():
        in_data = array_ops.placeholder(shape=input_shape, dtype='float32')
        pad_values = constant_op.constant(paddings)
        pad = tf.pad(in_data, paddings=pad_values, mode=mode, **kwargs)

        if mode == 'CONSTANT':
            if 'constant_values' in kwargs:
                out_name = 'PadV2:0'
            else:
                out_name = 'Pad:0'

        compare_tf_with_tvm(x, 'Placeholder:0', out_name)

def test_forward_pad():
    """ Pad """
1319 1320
    _test_pad((2, 3), [[1, 1], [2, 2]], mode="CONSTANT")
    _test_pad((2, 3), [[1, 1], [2, 2]], mode="CONSTANT", constant_values=1.0)
1321

1322 1323 1324 1325 1326 1327 1328 1329
#######################################################################
# Logical operators
# --------------------
def test_logical_and():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2')
        out = tf.logical_and(in1, in2, name='out')
1330 1331
        in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype('bool')
        in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype('bool')
1332 1333 1334 1335 1336 1337 1338
        compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0')

def test_logical_or():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2')
        out = tf.logical_or(in1, in2, name='out')
1339 1340
        in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype('bool')
        in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype('bool')
1341 1342 1343 1344 1345 1346 1347
        compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0')

def test_logical_xor():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in2')
        out = tf.logical_xor(in1, in2, name='out')
1348 1349
        in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype('bool')
        in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype('bool')
1350 1351 1352 1353 1354 1355
        compare_tf_with_tvm([in_data1, in_data2], ['in1:0', 'in2:0'], 'out:0')

def test_logical_not():
    with tf.Graph().as_default():
        in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name='in1')
        out = tf.logical_not(in1, name='out')
1356
        in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype('bool')
1357 1358 1359 1360 1361 1362 1363 1364
        compare_tf_with_tvm(in_data1, 'in1:0', 'out:0')

def test_forward_logical():
    test_logical_and()
    test_logical_or()
    test_logical_xor()
    test_logical_not()

1365 1366

#######################################################################
1367 1368
# Where, Select
# -------------
1369
def test_forward_where():
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    ''' Where: return elements depending on conditions'''
    with tf.Graph().as_default():
        with tf.Session() as sess:
            input1 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name='input1')
            input2 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name='input2')
            mask = input1 > input2
            tf.where(mask, input1 + 1, input2 * 2)
            in_data1 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32")
            in_data2 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32")
            compare_tf_with_tvm([in_data1, in_data2], ['input1:0', 'input2:0'], 'Select:0')


#######################################################################
1383 1384 1385 1386 1387
# Inception V3
# ------------
def test_forward_inception_v3():
    '''test inception V3 model'''
    with tf.Graph().as_default():
1388 1389
        graph_def = tf_testing.get_workload(
            'InceptionV3/inception_v3_2016_08_28_frozen-with_shapes.pb')
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        data = np.random.uniform(size=(1, 299, 299, 3)).astype('float32')

        with tf.Session() as sess:
            tf_output = run_tf_graph(sess, data, 'input:0', 'InceptionV3/Predictions/Reshape_1:0')
            tvm_output = run_tvm_graph(graph_def, data, 'input')
            tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5)

#######################################################################
# Inception V1
# ------------
def test_forward_inception_v1():
    '''test inception V1 model'''
    with tf.Graph().as_default():
        graph_def = tf_testing.get_workload("InceptionV1/classify_image_graph_def-with_shapes.pb")
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        # Build an image from random data.
        from PIL import Image
        from tvm.contrib import util

        img_array = np.random.uniform(size=(1, 600, 600, 3)).astype("uint8")
        img = Image.frombuffer('RGB', (600, 600), img_array.tostring(), 'raw', 'RGB', 0, 1)
        temp = util.tempdir()
        img_path = temp.relpath("tf-test.jpg")
1418
        img.save(img_path)
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

        import os.path
        if not tf.gfile.Exists(os.path.join(img_path)):
            tf.logging.fatal('File does not exist %s', img_path)
        data = tf.gfile.FastGFile(os.path.join(img_path), 'rb').read()

        temp.remove()

        # Extract tensorflow decoded image frame for tvm input
        with tf.Session() as sess:
            tvm_data = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'DecodeJpeg:0')

        with tf.Session() as sess:
            tf_output = run_tf_graph(sess, data, 'DecodeJpeg/contents:0', 'softmax:0')
            tvm_output = run_tvm_graph(graph_def, tvm_data, 'DecodeJpeg/contents')
            tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5)

#######################################################################
# Mobilenet
# ---------
def test_forward_mobilenet():
    '''test mobilenet model'''
    # MobilenetV2
    with tf.Graph().as_default():
        graph_def = tf_testing.get_workload(
            "https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz",
            "mobilenet_v2_1.4_224_frozen.pb")
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32')
        out_node = 'MobilenetV2/Predictions/Reshape_1'

        with tf.Session() as sess:
            # Add shapes to the graph.
            graph_def = tf_testing.AddShapesToGraphDef(sess, out_node)
            tf_output = run_tf_graph(sess, data, 'input:0', out_node + ':0')
            tvm_output = run_tvm_graph(graph_def, data, 'input')
1457 1458
            tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]),
                                        rtol=1e-5, atol=1e-5)
1459 1460 1461

#######################################################################
# ResnetV2
1462
# --------
1463 1464 1465 1466
def test_forward_resnetv2():
    '''test resnet model'''
    if is_gpu_available():
        with tf.Graph().as_default():
1467 1468
            graph_def = tf_testing.get_workload(
                "ResnetV2/resnet-20180601_resnet_v2_imagenet-shapes.pb")
1469 1470 1471 1472 1473 1474 1475 1476
            # Call the utility to import the graph definition into default graph.
            graph_def = tf_testing.ProcessGraphDefParam(graph_def)

            data = np.random.uniform(size=(128, 224, 224, 3)).astype('float32')
            out_node = 'ArgMax'

            with tf.Session() as sess:
                tf_output = run_tf_graph(sess, data, 'input_tensor:0', out_node + ':0')
1477 1478 1479 1480 1481
                for device in ["llvm", "cuda"]:
                    ctx = tvm.context(device, 0)
                    if not ctx.exist:
                        print("Skip because %s is not enabled" % device)
                        continue
1482 1483 1484 1485
                    tvm_output = run_tvm_graph(graph_def, data, 'input_tensor', len(tf_output),
                                               target=device)
                    tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]),
                                                rtol=1e-5, atol=1e-5)
1486 1487

#######################################################################
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
# Placeholder
# -----------
def test_forward_placeholder():
    '''test a simple pb with Placeholder node in the end of GraphDef'''
    with tf.Graph().as_default():
        graph_def = tf_testing.get_workload("Custom/placeholder.pb")
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)

        data = np.random.uniform(size=(1, 224, 224, 3)).astype('float32')
        out_node = 'mul'

        with tf.Session() as sess:
            # Add shapes to the graph.
            graph_def = tf_testing.AddShapesToGraphDef(sess, out_node)
            tf_output = run_tf_graph(sess, data, 'Placeholder:0', out_node + ':0')
            tvm_output = run_tvm_graph(graph_def, data, 'Placeholder')
1505 1506
            tvm.testing.assert_allclose(np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]),
                                        rtol=1e-5, atol=1e-5)
1507 1508

#######################################################################
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
# PTB
# ---
dir(tf.contrib)
def test_forward_ptb():
    '''test ptb model'''
    config = tf_testing.get_config()
    num_steps = config.num_steps
    num_hidden = config.hidden_size
    num_layers = config.num_layers
    batch_size = config.batch_size
    vocab_size = config.vocab_size
    out_sample_shape = (batch_size, vocab_size)
    out_state_shape = (num_layers, 2, batch_size, num_hidden)
    #Sample input
    inpt = "we have no useful information on"
    cnt_sample = 20

    def _pretty_print(items, is_char_model, id2word):
        if not is_char_model:
            return ' '.join([id2word[x] for x in items])
        else:
            return ''.join([id2word[x] for x in items]).replace('_', ' ')

    def _get_tvm_graph_module(graph_def):
        #Cell inputs 'c and 'h' consist of all layers values
        shape_dict = {'Model/Placeholder': (batch_size, num_steps),
1535 1536 1537 1538
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c':
                      (num_layers, batch_size, num_hidden),
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h':
                      (num_layers, batch_size, num_hidden)}
1539

1540
        mod, params = relay.frontend.from_tensorflow(graph_def, shape=shape_dict)
1541 1542 1543 1544 1545 1546

        dtype_dict = {'Model/Placeholder': 'int32',
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c':'float32',
                      'Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h':'float32'}
        target = 'llvm'
        with relay.build_config(opt_level=0):
1547
            graph, lib, params = relay.build(mod,
1548 1549
                                             target,
                                             params=params)
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
        from tvm.contrib import graph_runtime
        ctx = tvm.cpu(0)
        return params, graph_runtime.create(graph, lib, ctx)

    def _do_tvm_sample(model, data, in_states, params, num_samples):
        """Sampled from the model"""
        samples = []
        state = in_states
        sample = None
        def _get_sample(data, state):
            input_data = np.full((batch_size, num_steps), data, dtype="int32")
            in_state_tup = np.split(state, indices_or_sections=2, axis=1)
            in_state_c = np.reshape(in_state_tup[0], (num_layers, batch_size, num_hidden))
            in_state_h = np.reshape(in_state_tup[1], (num_layers, batch_size, num_hidden))

            model.set_input('Model/Placeholder', tvm.nd.array(input_data.astype("int32")))
            model.set_input('Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_c',
1567
                            tvm.nd.array(in_state_c.astype("float32")))
1568
            model.set_input('Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_h',
1569
                            tvm.nd.array(in_state_h.astype("float32")))
1570 1571 1572
            model.set_input(**params)
            model.run()
            tvm_output = model.get_output(0, tvm.nd.empty(out_sample_shape,
1573
                                                          "float32")).asnumpy()
1574
            state_output = model.get_output(1, tvm.nd.empty(out_state_shape,
1575
                                                            "float32")).asnumpy()
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
            sample = tf_testing.pick_from_weight(tvm_output[0])

            return sample, state_output

        for x in data:
            sample, state = _get_sample(x, state)

        if sample is not None:
            samples.append(sample)
        else:
            samples.append(0)

        k = 1
        while k < num_samples:
            sample, state = _get_sample(samples[-1], state)
            samples.append(sample)
            k += 1
        return samples, state

    with tf.Graph().as_default():
        word_to_id, id_to_word, graph_def = tf_testing.get_workload_ptb()
        vocab_size = len(word_to_id)
        # Call the utility to import the graph definition into default graph.
        graph_def = tf_testing.ProcessGraphDefParam(graph_def)
        sess = tf.Session()

    #TVM graph module creation
    params, m = _get_tvm_graph_module(graph_def)

    # Create 10 predicted statments of 20 words
    cnt_stm = 0
    while cnt_stm < 10:
        cnt_stm += 1
        in_state = np.full((num_layers, 2, batch_size, num_hidden), 0, dtype="float32")
        seed_for_sample = inpt.split()
        tvm_samples, tvm_state = _do_tvm_sample(m, [word_to_id[word] \
                                                    for word in seed_for_sample],
                                                in_state, params, cnt_sample)
        tvm_sample_str = _pretty_print(tvm_samples, False, id_to_word)
1615 1616 1617 1618
        tf_samples, tf_state = tf_testing.do_tf_sample(
            sess,
            [word_to_id[word] for word in seed_for_sample],
            in_state, cnt_sample)
1619 1620 1621
        tf_sample_str = _pretty_print(tf_samples, False, id_to_word)
        inpt = tvm_sample_str
        tvm.testing.assert_allclose(tf_samples, tvm_samples, rtol=1e-5, atol=1e-5)
1622
        assert tvm_sample_str == tf_sample_str
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724

#######################################################################
# LRN (Local Response Normalization)
# ----------------------------------

def _test_lrn(ishape, size, axis, bias, alpha, beta):
    """ testing local response normalization """
    lrn_depth_radius = size / 2

    inp_array = np.random.uniform(size=ishape).astype(np.float32)

    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype, name="lrn0_data")
        nn_ops.local_response_normalization(in1,
                                            name="lrn",
                                            depth_radius=lrn_depth_radius,
                                            bias=bias,
                                            alpha=alpha,
                                            beta=beta)

        compare_tf_with_tvm(inp_array, 'lrn0_data:0', 'lrn:0')

def test_forward_lrn():
    _test_lrn((1, 3, 20, 20), 3, 1, 1.0, 1.0, 0.5)

#######################################################################
# l2_normalize
# ------------

def _test_l2_normalize(ishape, eps, axis):
    """ testing l2 normalize (uses max, sum, square, sqrt frontend operators)"""

    inp_array = np.random.uniform(size=ishape).astype(np.float32)

    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        nn.l2_normalize(in1,
                        axis=axis,
                        epsilon=eps,
                        name=None,
                        dim=None)

        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'l2_normalize:0')

def test_forward_l2_normalize():
    _test_l2_normalize((1, 3, 20, 20), 0.001, (0,))

#######################################################################
# transpose
# ---------
def _test_forward_transpose(ishape, axes=None):
    data = np.random.uniform(size=ishape).astype(np.float32)

    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="transpose_data")

        if axes is None:
            tf.transpose(in1)
        else:
            tf.transpose(in1, perm=axes)

        compare_tf_with_tvm(data, 'transpose_data:0', 'transpose:0')

def test_forward_transpose():
    _test_forward_transpose((2, 3, 4), (1, 2, 0))
    _test_forward_transpose((2, 3, 4))
    _test_forward_transpose((7, 8, 8, 10))
    _test_forward_transpose((2, 3, 4), (1, 2, 0))
    _test_forward_transpose((2, 3, 4), (0, 1, 2))
    _test_forward_transpose((2, 3, 4, 5), (3, 0, 1, 2))


def test_forward_ceil():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.ceil(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Ceil:0')

def test_forward_floor():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.floor(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Floor:0')

def test_forward_relu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.relu(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Relu:0')

def test_forward_leaky_relu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.leaky_relu(in1, alpha=0.4)
1725
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'LeakyRelu:0')
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

def test_forward_elu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.elu(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Elu:0')

def test_forward_selu():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.selu(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Selu:0')

def test_forward_tanh():
    ishape = (1, 3, 10, 10)
    inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
        tf.nn.tanh(in1)
        compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Tanh:0')

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

#######################################################################
# Softmax
# -------
def test_forward_softmax():
    """test operator Softmax """
    def check_softmax(in_shape, axis, dtype):
        np_data = np.random.uniform(-100, 100, size=in_shape).astype(dtype)
        tf.reset_default_graph()
        in_data = tf.placeholder(dtype, in_shape, name="in_data")
        tf.nn.softmax(in_data, axis=axis, name="Softmax")
        compare_tf_with_tvm([np_data], ['in_data:0'], 'Softmax:0')
    check_softmax((2, 3, 5), 2, "float32")
    check_softmax((2, 3, 5), -1, "float32")


1767
#######################################################################
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
# Tensor
# ------

def test_forward_round():
    """test Round"""
    np_data = np.random.uniform(-10, 10, size=(5, 7)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7), name="in_data")
    tf.round(in_data, name="round")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'round:0')

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
def test_forward_abs():
    """test operator Abs"""
    np_data = np.random.uniform(1, 100, size=(9, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (9, 11), name="in_data")
    tf.math.abs(in_data, name="abs")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'abs:0')

def _test_forward_zeros_like(in_shape, dtype):
    np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    tf.zeros_like(in_data, name="zeros_like")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'zeros_like:0')

def test_forward_zeros_like():
    if tf.__version__ < LooseVersion('1.2'):
        _test_forward_zeros_like((2, 3), "int32")
        _test_forward_zeros_like((2, 3, 5), "int8")
        _test_forward_zeros_like((2, 3, 5, 7), "uint16")
        _test_forward_zeros_like((2, 3, 11), "float32")
        _test_forward_zeros_like((2, 3, 11), "float64")

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
def _test_forward_reverse_v2(in_shape, axis, dtype):
    np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    in_data = tf.placeholder(dtype, in_shape, name="in_data")
    tf.reverse(in_data, axis=[axis], name="reverse")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'reverse:0')

def test_forward_reverse_v2():
    """test ReverseV2"""
    _test_forward_reverse_v2((2, 3), 0, "int32")
    _test_forward_reverse_v2((2, 3, 5), 2, "float32")
    _test_forward_reverse_v2((2, 3, 5, 7), 1, "float32")
    _test_forward_reverse_v2((2, 3, 5), -1, "float64")
    _test_forward_reverse_v2((2, 3, 5), -3, "float64")

def test_forward_sign():
    """test Sign"""
    np_data = np.random.uniform(-10, 10, size=(5, 7, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
    tf.sign(in_data, name="sign")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'sign:0')

1825 1826 1827 1828 1829 1830 1831 1832
def test_forward_square():
    """test operator Square """
    np_data = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data")
    tf.square(in_data, name="square")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'square:0')

1833
def test_forward_pow_exp():
1834 1835 1836
    """test Pow and Exp """
    np_in1 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32)
    np_in2 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32)
1837 1838 1839 1840
    tf.reset_default_graph()
    in1 = tf.placeholder(tf.float32, (5, 7, 11), name="in1")
    in2 = tf.placeholder(tf.float32, (5, 7, 11), name="in2")
    out1 = tf.pow(in1, in2, name="pow")
1841
    out = tf.exp(in1, name='exp')
1842
    compare_tf_with_tvm([np_in1, np_in2], ['in1:0', 'in2:0'], 'pow:0')
1843
    compare_tf_with_tvm([np_in1], ['in1:0'], 'exp:0')
1844

1845
def test_forward_log():
1846
    """test operator Log """
1847 1848 1849 1850 1851 1852
    np_data = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data")
    tf.log(in_data, name="log")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'log:0')

1853 1854 1855 1856 1857 1858 1859 1860
def test_forward_negative():
    """test tf operator Neg """
    np_data = np.random.uniform(-100, 255, size=(224, 224, 3)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (224, 224, 3), name="in_data")
    tf.negative(in_data, name="negative")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'negative:0')

1861 1862 1863 1864 1865 1866 1867 1868
def test_forward_log_softmax():
    """test operator LogSoftmax"""
    np_data = np.random.uniform(1, 100, size=(9, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (9, 11), name="in_data")
    tf.math.log_softmax(in_data, name="LogSoftmax")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'LogSoftmax:0')

1869 1870 1871 1872 1873 1874 1875 1876
def test_forward_softplus():
    """test operator Softplus"""
    np_data = np.random.uniform(1, 10, size=(2, 3, 5)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data")
    tf.nn.softplus(in_data, name="softplus")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'softplus:0')

1877 1878 1879 1880 1881 1882 1883 1884
def test_forward_rsqrt():
    """test Rsqrt """
    np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
    tf.rsqrt(in_data, name="rsqrt")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'rsqrt:0')

1885 1886 1887 1888 1889 1890 1891 1892
def test_forward_sqrt():
    """test Sqrt """
    np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32)
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data")
    tf.sqrt(in_data, name="sqrt")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'sqrt:0')

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
def _test_forward_right_shift(in_shape, dtype):
    """test operator RightShift"""
    lh_data = np.random.randint(1, 3, size=in_shape).astype(dtype)
    rh_data = np.random.randint(1, 8, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    lft_data = tf.placeholder(dtype, in_shape, name="lft_data")
    rgt_data = tf.placeholder(dtype, in_shape, name="rgt_data")
    tf.bitwise.right_shift(lft_data, rgt_data, name="RightShift")
    compare_tf_with_tvm([lh_data, rh_data], ['lft_data:0', 'rgt_data:0'], 'RightShift:0')

def test_forward_right_shift():
    _test_forward_right_shift((7,), 'int32')
    _test_forward_right_shift((3, 11), 'int16')

def _test_forward_left_shift(in_shape, dtype):
    """test operator LeftShift"""
    lh_data = np.random.randint(100, 1000000, size=in_shape).astype(dtype)
    rh_data = np.random.randint(1, 3, size=in_shape).astype(dtype)
    tf.reset_default_graph()
    lft_data = tf.placeholder(dtype, in_shape, name="lft_data")
    rgt_data = tf.placeholder(dtype, in_shape, name="rgt_data")
    tf.bitwise.left_shift(lft_data, rgt_data, name="LeftShift")
    compare_tf_with_tvm([lh_data, rh_data], ['lft_data:0', 'rgt_data:0'], 'LeftShift:0')

def test_forward_left_shift():
    _test_forward_left_shift((10,), 'int32')
    _test_forward_left_shift((224, 224, 3), 'int16')

1921
#######################################################################
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
# Mean
# ----
def test_forward_mean():
    def check_mean(ishape, **kwargs):
        inp_array = np.random.uniform(size=ishape).astype(np.float32)
        with tf.Graph().as_default():
            in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype)
            tf.keras.backend.mean(in1, **kwargs)
            compare_tf_with_tvm(inp_array, 'Placeholder:0', 'Mean:0', no_gpu=True)

    check_mean((10, 8, 16, 32))
1933 1934
    check_mean((10, 8, 16, 32), axis=(2, 3))
    check_mean((10, 8, 16, 32), axis=(1, 2), keepdims=True)
1935 1936

#######################################################################
1937 1938 1939
# All, Max, Min
# -------------
def test_forward_reduce_all():
1940 1941 1942 1943 1944 1945 1946
    """Test the All operator."""
    np_data = np.random.choice([True, False], size=(5, 7, 11))
    tf.reset_default_graph()
    in_data = tf.placeholder(tf.bool, (5, 7, 11), name="in_data")
    tf.reduce_all(in_data, name="all")
    compare_tf_with_tvm([np_data], ['in_data:0'], 'all:0')

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
def test_forward_reduce_max():
    def check_max(ishape, axis, keepdims, dtype):
        tf.reset_default_graph()
        np_data = np.random.uniform(size=ishape).astype(dtype)
        in_data = tf.placeholder(dtype, name="in_data")
        tf.math.reduce_max(in_data, axis=axis, keepdims=keepdims, name="reduce_max")
        compare_tf_with_tvm([np_data], ['in_data:0'], 'reduce_max:0')

    check_max((10, 8, 16, 32), axis=(-1), keepdims=True, dtype="int32")
    check_max((10, 8, 16, 32), axis=(2, 3), keepdims=True, dtype="float32")
    check_max((10, 8, 16, 32), axis=(1, 2), keepdims=True, dtype='float32')

def test_forward_reduce_min():
    def check_min(ishape, axis, keepdims, dtype):
        tf.reset_default_graph()
        np_data = np.random.uniform(size=ishape).astype(dtype)
        in_data = tf.placeholder(dtype, name="in_data")
        tf.math.reduce_min(in_data, axis=axis, keepdims=keepdims, name="reduce_max")
        compare_tf_with_tvm([np_data], ['in_data:0'], 'reduce_max:0')

    check_min((10, 8, 16, 32), axis=(-1), keepdims=True, dtype="int32")
    check_min((10, 8, 16, 32), axis=(2, 3), keepdims=True, dtype="float32")
    check_min((10, 8, 16, 32), axis=(1, 2), keepdims=True, dtype='float32')

1971
#######################################################################
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
# Relational operators
# --------------------
def _test_forward_rel_op(data, func):
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in1')
        in2 = tf.placeholder(shape=data[1].shape, dtype=data[1].dtype, name='in2')
        op = func(in1, in2, name='op')
        out = tf.cast(op, tf.int32, name='out1')
        compare_tf_with_tvm([data[0], data[1]], ['in1:0', 'in2:0'], 'out1:0')

def test_forward_rel_ops():
    t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
    _test_forward_rel_op([t1, t2], math_ops.less)
    _test_forward_rel_op([t1, t2], math_ops.greater)
    _test_forward_rel_op([t1, t2], math_ops.less_equal)
    _test_forward_rel_op([t1, t2], math_ops.greater_equal)
    _test_forward_rel_op([t1, t2], math_ops.equal)
    _test_forward_rel_op([t1, t2], math_ops.not_equal)

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
#######################################################################
# ExpandDims
# ----------
def _test_forward_expand_dims(data, axis):
    in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name='in1')
    out = tf.expand_dims(in1, axis)
    compare_tf_with_tvm([data], [in1.name], out.name)

def test_forward_expand_dims():
    _test_forward_expand_dims(np.int32(1), 0)
    _test_forward_expand_dims(np.array([1]), 0)
    _test_forward_expand_dims(np.array([1]), -1)
    _test_forward_expand_dims(np.array([[1], [2]]), 0)
    _test_forward_expand_dims(np.array([[1], [2]]), 1)
    _test_forward_expand_dims(np.array([[1], [2]]), -1)
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

#######################################################################
# Prod
# ----
def _test_forward_reduce_prod(shape, axis, keepdims):
    inp_array1 = np.random.uniform(-5, 5, size=shape).astype(np.float32)
    with tf.Graph().as_default():
        in1 = tf.placeholder(shape=inp_array1.shape, dtype=inp_array1.dtype)
        out = tf.math.reduce_prod(in1, axis, keepdims)
        compare_tf_with_tvm(inp_array1, in1.name, out.name)

def test_forward_reduce_prod():
    _test_forward_reduce_prod((5,), 0, False)
    _test_forward_reduce_prod((5, 5), 0, False)
    _test_forward_reduce_prod((5, 5), 1, False)
    _test_forward_reduce_prod((5,), 0, True)
    _test_forward_reduce_prod((5, 5), 0, True)
    _test_forward_reduce_prod((5, 5), 1, True)

2027 2028

#######################################################################
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
# Maximum, Minimum
# ----------------
def test_forward_maximum():
    """test Op Maximum"""
    def check_maximum(lh_shape, rh_shape, dtype):
        tf.reset_default_graph()
        lh_data = np.random.uniform(size=lh_shape).astype(dtype)
        rh_data = np.random.uniform(size=rh_shape).astype(dtype)
        lft_data = tf.placeholder(dtype, name="lft_data")
        rgt_data = tf.placeholder(dtype, name="rgt_data")
        tf.math.maximum(lft_data, rgt_data, name="maximum")
        compare_tf_with_tvm([lh_data, rh_data], ['lft_data:0', 'rgt_data:0'], 'maximum:0')

    check_maximum((10, 8, 16, 32), (1,), dtype="int32")
    check_maximum((10, 8, 16, 32), (10, 8, 16, 32), dtype="float32")

def test_forward_minimum():
    """test Op Minimum"""
    def check_minimum(lh_shape, rh_shape, dtype):
        tf.reset_default_graph()
        lh_data = np.random.uniform(size=lh_shape).astype(dtype)
        rh_data = np.random.uniform(size=rh_shape).astype(dtype)
        lft_data = tf.placeholder(dtype, name="lft_data")
        rgt_data = tf.placeholder(dtype, name="rgt_data")
        tf.math.minimum(lft_data, rgt_data, name="minimum")
        compare_tf_with_tvm([lh_data, rh_data], ['lft_data:0', 'rgt_data:0'], 'minimum:0')

    check_minimum((10, 8, 16, 32), (1,), dtype="int32")
    check_minimum((10, 8, 16, 32), (10, 8, 16, 32), dtype="float32")


#######################################################################
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
# PlaceholderWithDefault
# ----------------------
def test_placeholder():
    with tf.Graph().as_default():
        in_data1 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32)
        var1 = tf.Variable(in_data1, name='in1')
        var2 = array_ops.placeholder_with_default(var1, None, name='place1')

        in_data2 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32)
        place1 = array_ops.placeholder(shape=in_data1.shape, dtype=in_data1.dtype, name='in2')

        out1 = tf.math.add(var1, var2, name='out1')
        out2 = tf.math.add(out1, place1, name='out2')

2075 2076
        compare_tf_with_tvm([in_data1, in_data2], ['place1:0', 'in2:0'], 'out2:0',
                            init_global_variables=True)
2077

2078

2079 2080 2081 2082
#######################################################################
# Main
# ----
if __name__ == '__main__':
2083

2084 2085 2086
    # Transforms
    test_forward_transpose()
    test_forward_reshape()
2087
    test_forward_depthtospace()
2088 2089
    test_forward_squeeze()
    test_forward_pack()
2090 2091
    test_forward_broadcast_to()
    test_forward_fill()
2092
    test_forward_crop()
2093 2094
    test_forward_resize()
    test_forward_crop_and_resize()
2095
    test_forward_pad()
2096
    test_forward_unpack()
2097
    test_forward_gather()
2098
    test_forward_gather_nd()
2099
    test_forward_stridedslice()
2100 2101
    test_forward_split()
    test_forward_unstack()
2102
    test_forward_tile()
2103
    test_forward_top_k_v2()
2104
    test_forward_clip_by_value()
2105 2106 2107 2108 2109 2110
    test_forward_maximum()
    test_forward_minimum()
    test_forward_range()
    test_forward_right_shift()
    test_forward_left_shift()
    test_forward_truncatemod()
2111 2112 2113 2114 2115 2116 2117 2118 2119

    # Activations
    test_forward_sigmoid()
    test_forward_relu()
    test_forward_leaky_relu()
    test_forward_elu()
    test_forward_selu()
    test_forward_tanh()

2120 2121 2122 2123 2124
    # Tensor
    test_forward_round()
    test_forward_reverse_v2()
    test_forward_pow_exp()
    test_forward_sign()
2125
    test_forward_log()
2126
    test_forward_negative()
2127 2128
    test_forward_divide()
    test_forward_abs()
2129 2130
    test_forward_softplus()
    test_forward_sqrt()
2131
    test_forward_rsqrt()
2132
    test_forward_expand_dims()
2133 2134 2135 2136 2137
    test_forward_square()
    test_forward_softmax()
    test_forward_log_softmax()
    test_forward_bias_add()
    test_forward_zeros_like()
2138

2139 2140 2141 2142
    # Reductions
    test_forward_argminmax()
    test_forward_reduce()
    test_forward_mean()
2143
    test_forward_reduce_prod()
2144 2145 2146
    test_forward_reduce_all()
    test_forward_reduce_max()
    test_forward_reduce_min()
2147 2148 2149 2150 2151

    # General
    test_forward_multi_input()
    test_forward_multi_output()
    test_forward_variable()
2152
    test_placeholder()
2153 2154 2155 2156

    # NN
    test_forward_convolution()
    test_forward_pooling()
2157
    test_forward_concat_v2()
2158 2159
    test_forward_lrn()
    test_forward_l2_normalize()
2160 2161
    test_forward_space_to_batch_nd()
    test_forward_batch_to_space_nd()
2162 2163 2164 2165 2166 2167

    # End to End
    test_forward_inception_v3()
    test_forward_inception_v1()
    test_forward_mobilenet()
    test_forward_resnetv2()
2168
    test_forward_placeholder()
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
    test_forward_ptb()

    # RNN
    test_forward_lstm()

    # Elementwise
    test_forward_ceil()
    test_forward_floor()

    # Relational ops
    test_forward_rel_ops()
2180
    test_forward_logical()
2181
    test_forward_where()
2182 2183

    test_forward_matmul()
2184
    # TODO missing tests: rank, range