test_graph.py 3.73 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
import mxnet as mx
from tvm import relay
import model_zoo

def compare_graph(f1, f2):
    f1 = relay.ir_pass.infer_type(f1)
    f2 = relay.ir_pass.infer_type(f2)
    assert relay.ir_pass.alpha_equal(f1, f2)

def test_mlp():
    shape = {"data": (1, 1, 28, 28)}
    mx_fun = model_zoo.mx_mlp()
    from_mx_fun, _ = relay.frontend.from_mxnet(mx_fun, shape=shape)
    relay_fun = model_zoo.relay_mlp()
    compare_graph(from_mx_fun, relay_fun)


def test_vgg():
    shape = {"data": (1, 3, 224, 224)}
    for n in [11, 13, 16, 19]:
        mx_sym = model_zoo.mx_vgg(n)
        from_mx_sym, _ = relay.frontend.from_mxnet(mx_sym, shape=shape)
        relay_sym = model_zoo.relay_vgg(n)
        compare_graph(from_mx_sym, relay_sym)


def test_resnet():
    shape = {"data": (1, 3, 224, 224)}
    for n in [18, 34, 50, 101]:
        mx_sym = model_zoo.mx_resnet(n)
        from_mx_sym, _ = relay.frontend.from_mxnet(mx_sym, shape=shape)
        relay_sym = model_zoo.relay_resnet(n)
        compare_graph(from_mx_sym, relay_sym)


def test_squeezenet():
    shape = {"data": (1, 3, 224, 224)}
    for version in ['1.0', '1.1']:
        mx_sym = model_zoo.mx_squeezenet(version)
        from_mx_sym, _ = relay.frontend.from_mxnet(mx_sym, shape)
        relay_sym = model_zoo.relay_squeezenet(version)
        compare_graph(from_mx_sym, relay_sym)


def test_inception_v3():
    shape = {"data": (1, 3, 299, 299)}
    mx_sym = model_zoo.mx_inception_v3()
    from_mx_sym, _ = relay.frontend.from_mxnet(mx_sym, shape)
    relay_sym = model_zoo.relay_inception_v3()
    compare_graph(from_mx_sym, relay_sym)


def test_dqn():
    shape = {"data": (1, 4, 84, 84)}
    mx_sym = model_zoo.mx_dqn()
    from_mx_sym, _ = relay.frontend.from_mxnet(mx_sym, shape)
    relay_sym = model_zoo.relay_dqn()
    compare_graph(from_mx_sym, relay_sym)


def test_dcgan():
    shape = {"data": (2, 100)}
    mx_sym = model_zoo.mx_dcgan()
    from_mx_sym, _ = relay.frontend.from_mxnet(mx_sym, shape)
    relay_sym = model_zoo.relay_dcgan(batch_size=2)
    compare_graph(from_mx_sym, relay_sym)


def test_multi_outputs():
    xshape = (10, 27)
    yshape = (10, 9)

    def mx_compose(F, **kwargs):
        x = F.sym.Variable("x")
        y = F.sym.Variable("y")
        z = F.sym.split(x, **kwargs)
        return F.sym.broadcast_sub(F.sym.broadcast_add(z[0], z[2]), y)

    def relay_compose(F, **kwargs):
        x = F.var("x", shape=xshape)
        y = F.var("y", shape=yshape)
        z = F.split(x, **kwargs)
        z = F.subtract(F.add(z[0], z[2]), y)
        return relay.Function(relay.ir_pass.free_vars(z), z)

    mx_sym = mx_compose(mx, num_outputs=3, axis=1)
    from_mx_sym, _ = relay.frontend.from_mxnet(
        mx_sym, shape={"x":xshape, "y":yshape})
    relay_sym = relay_compose(relay, indices_or_sections=3, axis=1)
    compare_graph(from_mx_sym, relay_sym)


if __name__ == "__main__":
    test_mlp()
    test_resnet()
    test_vgg()
    test_multi_outputs()
    test_dqn()
    test_dcgan()
    test_squeezenet()
    test_inception_v3()