broadcast.cc 18.7 KB
Newer Older
1 2 3 4 5
/*!
 *  Copyright (c) 2017 by Contributors
 * \file broadcast.cc
 * \brief broadcast operator.
 */
6 7
#include <tvm/expr.h>
#include <tvm/packed_func_ext.h>
8 9 10
#include <nnvm/op.h>
#include <nnvm/node.h>
#include <nnvm/op_attr_types.h>
11 12
#include <nnvm/compiler/op_attr_types.h>
#include <nnvm/compiler/util.h>
13
#include <nnvm/top/tensor.h>
14
#include <nnvm/top/nn.h>
15 16
#include "../op_common.h"
#include "../elemwise_op_common.h"
17
#include "topi/broadcast.h"
18
#include "topi/elemwise.h"
19 20 21

namespace nnvm {
namespace top {
22 23
using namespace tvm;
using namespace nnvm::compiler;
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

// broadcast_to
DMLC_REGISTER_PARAMETER(BroadcastToParam);

inline bool BroadcastToInferShape(const NodeAttrs& attrs,
                                  std::vector<TShape>* in_attrs,
                                  std::vector<TShape>* out_attrs) {
  CHECK_EQ(in_attrs->size(), 1U);
  CHECK_EQ(out_attrs->size(), 1U);
  const TShape& ishape = (*in_attrs)[0];
  if (ishape.ndim() == 0) return false;

  const BroadcastToParam& param = nnvm::get<BroadcastToParam>(attrs.parsed);
  CHECK_EQ(ishape.ndim(), param.shape.ndim())
      << "Operand of shape " << ishape
      << " cannot be broadcasted to " << param.shape;
  TShape oshape = param.shape;
  for (dim_t i = 0; i < ishape.ndim(); ++i) {
    if (oshape[i] != 0) {
      CHECK(ishape[i] == oshape[i] || ishape[i] == 1)
        << "Array cannot be broadcasted from " <<
          ishape << " to " << param.shape;
    } else {
      oshape[i] = ishape[i];
    }
  }
  NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, oshape);
  return true;
}

NNVM_REGISTER_OP(broadcast_to)
.describe(R"code(Broadcasts the input array to a new shape.

Broadcasting is a mechanism that allows NDArrays to perform arithmetic operations
with arrays of different shapes efficiently without creating multiple copies of arrays.
Also see, `Broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_ for more explanation.

Broadcasting is allowed on axes with size 1, such as from `(2,1,3,1)` to
`(2,8,3,9)`. Elements will be duplicated on the broadcasted axes.

For example::

   broadcast_to([[1,2,3]], shape=(2,3)) = [[ 1.,  2.,  3.],
                                           [ 1.,  2.,  3.]])

The dimension which you do not want to change can also be kept as `0` which means copy the original value.
So with `shape=(2,0)`, we will obtain the same result as in the above example.

)code" NNVM_ADD_FILELINE)
73
.add_argument("data", "Tensor", "Input data.")
74
.add_arguments(BroadcastToParam::__FIELDS__())
75 76
.set_attr_parser(ParamParser<BroadcastToParam>)
.set_attr<FGetAttrDict>("FGetAttrDict", ParamGetAttrDict<BroadcastToParam>)
77 78
.set_attr<FInferShape>("FInferShape", BroadcastToInferShape)
.set_attr<FInferType>("FInferType", ElemwiseType<1, 1>)
79
.set_attr<FCorrectLayout>("FCorrectLayout", ElemwiseFixedLayoutUnknownOut<1, 1>)
80 81 82 83 84 85 86 87
.set_attr<FTVMCompute>(
  "FTVMCompute", [](const NodeAttrs& attrs,
    const Array<Tensor>& inputs,
    const Array<Tensor>& out_info) {
      const BroadcastToParam& param = nnvm::get<BroadcastToParam>(attrs.parsed);
      auto shape = ShapeToArray(param.shape);
      return Array<Tensor>{ topi::broadcast_to(inputs[0], shape) };
  })
88 89
.set_num_inputs(1)
.set_num_outputs(1)
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
.set_support_level(4);

// binary broadcast op
inline bool BinaryBroadcastShape(const nnvm::NodeAttrs& attrs,
                                 std::vector<TShape>* in_attrs,
                                 std::vector<TShape>* out_attrs) {
  CHECK_EQ(in_attrs->size(), 2U);
  CHECK_EQ(out_attrs->size(), 1U);
  const TShape& lhs = (*in_attrs)[0];
  const TShape& rhs = (*in_attrs)[1];

  // avoid pre-mature shape inference.
  if (lhs.ndim() == 0 || rhs.ndim() == 0) return false;

  if (lhs == rhs) {
    NNVM_ASSIGN_INPUT_SHAPE(attrs, *out_attrs, 0, lhs);
    return true;
  }
  TShape out(std::max(lhs.ndim(), rhs.ndim()));
  dim_t bl = out.ndim() - lhs.ndim();
  dim_t br = out.ndim() - rhs.ndim();
  for (dim_t i = 0; i < out.ndim(); ++i) {
    dim_t l = 1, r = 1;
    if (i >= bl) l = lhs[i - bl];
    if (i >= br) r = rhs[i - br];
    if (l != r) {
      if (l == 0 || r == 0) {
        out[i] = 0;
      } else {
        CHECK(l == 1 || r == 1)
          << "operands could not be broadcast together with shapes "
121
          << lhs << " " << rhs << ", l=" << l << ", r=" << r;
122 123 124 125 126 127 128 129 130 131
        out[i] = std::max(l, r);
      }
    } else {
      out[i] = l;
    }
  }
  NNVM_ASSIGN_OUTPUT_SHAPE(attrs, *out_attrs, 0, out);
  return true;
}

132 133 134 135
inline bool BinaryBroadcastCorrectLayout(const NodeAttrs& attrs,
                                         std::vector<Layout> *ilayouts,
                                         const std::vector<Layout> *last_ilayouts,
                                         std::vector<Layout> *olayouts) {
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  CHECK_EQ(ilayouts->size(), 2U);
  CHECK_EQ(olayouts->size(), 1U);
  Layout lhs = (*ilayouts)[0];
  Layout rhs = (*ilayouts)[1];
  Layout out(Layout::Undef());

  if (lhs.defined() && rhs.defined()) {
    if (lhs == rhs) {
      NNVM_ASSIGN_LAYOUT(*olayouts, 0, lhs);
      return true;
    }
    // For example, NCHW <-> CHW, N16nCH16cW <-> HCW16c, etc, are broadcast-convertible
    // because as the definition, CHW can broadcast with NCHW.
    // For the second case, we can convert HCW16c to CH16cW then it can broadcast with N16nCH16cW.
    // But CNHW <-> CHW, NCHW16n <-> CHW are not,
    // because not matter how we adjust the layout of 'CHW',
    // we can never have an 'N' between 'C' and "HW".
    size_t l_start = 0, r_start = 0;
    size_t l = 0, r = 0;
    bool find_first_match = false;
    while (l < lhs.ndim() && r < rhs.ndim()) {
      if (!rhs.contains(Layout::to_superdim(lhs[l]))) {
        CHECK(!find_first_match) << lhs << " and " << rhs << " are not broadcast-convertible";
        l_start = ++l;
      } else if (!lhs.contains(Layout::to_superdim(rhs[r]))) {
        CHECK(!find_first_match) << lhs << " and " << rhs << " are not broadcast-convertible";
        r_start = ++r;
      } else {
        find_first_match = true;
        ++l; ++r;
      }
    }
    if (l_start > 0 && r_start > 0) {
      LOG(FATAL) << lhs << " and " << rhs << " are not broadcast-convertible";
    } else if (l_start > 0) {
      rhs = lhs.sublayout(l_start, lhs.ndim()-l_start);
      out = lhs;
    } else if (r_start > 0) {
      lhs = rhs.sublayout(r_start, rhs.ndim()-r_start);
      out = rhs;
    } else {
      // prior to keep left layout
      rhs = lhs;
      out = lhs;
    }
  } else if (lhs.defined()) {
    const Layout& last_lhs = last_ilayouts->at(0);
    if (last_lhs.defined()) {
      CHECK(lhs.convertible(last_lhs)) << "current lhs layout " << lhs
                                       << " cannot be converted to the original one " << last_lhs;
      lhs = last_lhs;
      // cannot decide output layout
    }
  } else if (rhs.defined()) {
    const Layout& last_rhs = last_ilayouts->at(1);
    if (last_rhs.defined()) {
      CHECK(rhs.convertible(last_rhs)) << "current rhs layout " << rhs
                                       << " cannot be converted to the original one " << last_rhs;
      rhs = last_rhs;
      // cannot decide output layout
    }
  }
  NNVM_ASSIGN_LAYOUT(*ilayouts, 0, lhs);
  NNVM_ASSIGN_LAYOUT(*ilayouts, 1, rhs);
  NNVM_ASSIGN_LAYOUT(*olayouts, 0, out);
  return true;
}
203

204
#define NNVM_REGISTER_BINARY_BROADCAST_OP(name, TOPIOp)             \
205 206 207 208 209
  NNVM_REGISTER_OP(name)                                            \
  .set_num_inputs(2)                                                \
  .set_num_outputs(1)                                               \
  .set_attr<FInferShape>("FInferShape", BinaryBroadcastShape)       \
  .set_attr<FInferType>("FInferType", ElemwiseType<2, 1>)           \
210 211
  .set_attr<FCorrectLayout>("FCorrectLayout",                       \
    BinaryBroadcastCorrectLayout)                                   \
212 213 214 215
  .set_attr<FInplaceOption>("FInplaceOption",                       \
    [](const NodeAttrs& attrs) {                                    \
      return std::vector<std::pair<int, int> >{{0, 0}, {1, 0}};     \
    })                                                              \
216 217 218 219 220
  .set_attr<FTVMCompute>(                                           \
    "FTVMCompute", [](const NodeAttrs& attrs,                       \
      const Array<Tensor>& inputs,                                  \
      const Array<Tensor>& out_info) {                              \
        return Array<Tensor>{                                       \
221
          topi::TOPIOp(inputs[0], inputs[1]) };                     \
222
    })                                                              \
223 224 225 226
  .add_argument("lhs", "Tensor", "first input")                     \
  .add_argument("rhs", "Tensor", "second input")


227
NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_add, add)
228 229 230 231 232 233 234 235 236 237 238 239 240 241
.add_alias("__add_symbol__")
.describe(R"code(Returns element-wise sum of the input arrays with broadcasting.

Example::

   x = [[ 1.,  1.,  1.],
        [ 1.,  1.,  1.]]

   y = [[ 0.],
        [ 1.]]

   broadcast_add(x, y) = [[ 1.,  1.,  1.],
                          [ 2.,  2.,  2.]]

242 243 244 245 246 247 248 249 250
)code" NNVM_ADD_FILELINE)
.set_attr<FGradient>(
  "FGradient", [](const NodePtr& n,
                  const std::vector<NodeEntry>& ograds) {
    return std::vector<NodeEntry>{
      MakeNode("collapse_sum", n->attrs.name + "_dlhs", { ograds[0], n->inputs[0] }),
      MakeNode("collapse_sum", n->attrs.name + "_drhs", { ograds[0], n->inputs[1] })
    };
});
251 252


253
NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_sub, subtract)
254 255 256 257 258 259 260 261 262 263 264 265 266 267
.add_alias("__sub_symbol__")
.describe(R"code(Returns element-wise difference of the input arrays with broadcasting.

Example::

   x = [[ 1.,  1.,  1.],
        [ 1.,  1.,  1.]]

   y = [[ 0.],
        [ 1.]]

   broadcast_sub(x, y) = [[ 1.,  1.,  1.],
                          [ 0.,  0.,  0.]]

268 269 270 271 272 273 274 275 276 277 278 279
)code" NNVM_ADD_FILELINE)
.set_attr<FGradient>(
  "FGradient", [](const NodePtr& n,
                  const std::vector<NodeEntry>& ograds) {
    return std::vector<NodeEntry>{
      MakeNode("collapse_sum", n->attrs.name + "_dlhs", { ograds[0], n->inputs[0] }),
      MakeNode("collapse_sum", n->attrs.name + "_drhs", {
          MakeNode("negative", n->attrs.name + "_drhs_neg", {ograds[0]}),
          n->inputs[1]
        })
    };
});
280 281


282
NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_mul, multiply)
283 284 285 286 287 288 289 290 291 292 293 294 295
.add_alias("__mul_symbol__")
.describe(R"code(Returns element-wise product of the input arrays with broadcasting.

Example::

   x = [[ 1.,  1.,  1.],
        [ 1.,  1.,  1.]]

   y = [[ 0.],
        [ 1.]]

   broadcast_mul(x, y) = [[ 0.,  0.,  0.],
                          [ 1.,  1.,  1.]]
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
)code" NNVM_ADD_FILELINE)
.set_attr<FGradient>(
  "FGradient", [](const NodePtr& n,
                  const std::vector<NodeEntry>& ograds) {
    NodeEntry dlhs = MakeNode("collapse_sum", n->attrs.name + "_dlhs_sum", {
        MakeNode("broadcast_mul", n->attrs.name + "_dlhs_mul",
                 { n->inputs[1], ograds[0] }),
        n->inputs[0]
      });
    NodeEntry drhs = MakeNode("collapse_sum", n->attrs.name + "_drhs_sum", {
        MakeNode("broadcast_mul", n->attrs.name + "_drhs_mul",
                 { n->inputs[0], ograds[0] }),
        n->inputs[1]
      });
    return std::vector<NodeEntry>{ dlhs, drhs };
});
312 313


314
NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_div, divide)
315 316 317 318 319 320 321 322 323 324 325 326 327 328
.add_alias("__div_symbol__")
.describe(R"code(Returns element-wise division of the input arrays with broadcasting.

Example::

   x = [[ 6.,  6.,  6.],
        [ 6.,  6.,  6.]]

   y = [[ 2.],
        [ 3.]]

   broadcast_div(x, y) = [[ 3.,  3.,  3.],
                          [ 2.,  2.,  2.]]

329 330 331 332 333 334 335 336 337 338 339
)code" NNVM_ADD_FILELINE)
.set_attr<FGradient>(
  "FGradient", [](const NodePtr& n,
                  const std::vector<NodeEntry>& ograds) {
    NodeEntry dlhs = MakeNode("collapse_sum", n->attrs.name + "_dlhs_sum", {
        MakeNode("broadcast_div", n->attrs.name + "_dlhs_div",
                 { ograds[0], n->inputs[1] }),
        n->inputs[0]
      });
    NodeEntry dy = MakeNode("broadcast_div", n->attrs.name + "_drhs_div", {
        NodeEntry{n, 0, 0},
340
        MakeNode("negative", n->attrs.name + "_rhs_neg", {n->inputs[1]})
341 342 343 344 345 346 347
      });
    NodeEntry drhs = MakeNode("collapse_sum", n->attrs.name + "_drhs_sum", {
        MakeNode("broadcast_mul", n->attrs.name + "_drhs_mul", { dy, ograds[0] }),
        n->inputs[1]
      });
    return std::vector<NodeEntry>{ dlhs, drhs };
});
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_mod, mod)
.add_alias("__mod_symbol__")
.describe(R"code(Returns element-wise mod of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 3.]]

   broadcast_mod(x, y) = [[ 1.,  0.,  1.],
                          [ 1.,  2.,  0.]]

)code" NNVM_ADD_FILELINE);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_max, maximum)
.add_alias("__max_symbol__")
.describe(R"code(Returns element-wise max of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 3.]]

   broadcast_max(x, y) = [[ 2.,  2.,  3.],
                          [ 4.,  5.,  6.]]

)code" NNVM_ADD_FILELINE);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_min, minimum)
.add_alias("__min_symbol__")
.describe(R"code(Returns element-wise minimum of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 3.]]

   broadcast_min(x, y) = [[ 1.,  2.,  2.],
                          [ 3.,  3.,  3.]]

)code" NNVM_ADD_FILELINE);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_pow, power)
.add_alias("__pow_symbol__")
.describe(R"code(Returns element-wise x^y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 1.],
        [ 2.]]

   broadcast_pow(x, y) = [[ 1.,   2.,   3. ],
                          [ 16.,  25.,  36.]]

)code" NNVM_ADD_FILELINE);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_left_shift, left_shift)
.add_alias("__left_shift_symbol__")
.describe(R"code(Returns element-wise x << y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 1.]]

   broadcast_left_shift(x, y) = [[ 4.,  8.,  12.],
                                 [ 8.,  10., 12.]]

)code" NNVM_ADD_FILELINE);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_right_shift, right_shift)
.add_alias("__right_shift_symbol__")
.describe(R"code(Returns element-wise x >> y of the input arrays with broadcasting.

Example::

   x = [[ 4.,  8.,  12.],
        [ 8.,  10., 12.]]

   y = [[ 2.],
        [ 1.]]

   broadcast_right_shift(x, y) = [[ 1.,  2.,  3.],
                                  [ 4.,  5.,  6.]]

)code" NNVM_ADD_FILELINE);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_greater, greater)
.add_alias("__greater_symbol__")
.describe(R"code(Returns element-wise x > y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 3.]]

   broadcast_greater(x, y) = [[ 0.,  0.,  1.],
                              [ 1.,  1.,  1.]]

)code" NNVM_ADD_FILELINE)
.set_attr<FTVMCompute>(
  "FTVMCompute", [](const NodeAttrs& attrs,
                    const Array<Tensor>& inputs,
                    const Array<Tensor>& out_info) {
    return Array<Tensor>{ topi::cast(topi::greater(inputs[0], inputs[1]), out_info[0]->dtype) };
}, 11);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_less, less)
.add_alias("__less_symbol__")
.describe(R"code(Returns element-wise x < y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 3.]]

   broadcast_less(x, y) = [[ 1.,  0.,  0.],
                           [ 0.,  0.,  0.]]

)code" NNVM_ADD_FILELINE)
.set_attr<FTVMCompute>(
  "FTVMCompute", [](const NodeAttrs& attrs,
                    const Array<Tensor>& inputs,
                    const Array<Tensor>& out_info) {
    return Array<Tensor>{ topi::cast(topi::less(inputs[0], inputs[1]), out_info[0]->dtype) };
}, 11);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_equal, equal)
.add_alias("__equal_symbol__")
.describe(R"code(Returns element-wise x == y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 5.]]

   broadcast_equal(x, y) = [[ 0.,  1.,  0.],
                            [ 0.,  1.,  0.]]

)code" NNVM_ADD_FILELINE)
.set_attr<FTVMCompute>(
  "FTVMCompute", [](const NodeAttrs& attrs,
                    const Array<Tensor>& inputs,
                    const Array<Tensor>& out_info) {
    return Array<Tensor>{ topi::cast(topi::equal(inputs[0], inputs[1]), out_info[0]->dtype) };
}, 11);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_not_equal, not_equal)
.add_alias("__not_equal_symbol__")
.describe(R"code(Returns element-wise x != y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 4.]]

   broadcast_not_equal(x, y) = [[ 1.,  0.,  1.],
                                [ 0.,  1.,  1.]]

)code" NNVM_ADD_FILELINE)
.set_attr<FTVMCompute>(
  "FTVMCompute", [](const NodeAttrs& attrs,
                    const Array<Tensor>& inputs,
                    const Array<Tensor>& out_info) {
    return Array<Tensor>{ topi::cast(topi::not_equal(inputs[0],
                                                     inputs[1]),
                                                     out_info[0]->dtype) };
}, 11);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_greater_equal, greater_equal)
.add_alias("__greater_equal_symbol__")
.describe(R"code(Returns element-wise x >= y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 2.],
        [ 6.]]

   broadcast_greater_equal(x, y) = [[ 0.,  1.,  1.],
                                    [ 0.,  0.,  1.]]

)code" NNVM_ADD_FILELINE)
.set_attr<FTVMCompute>(
  "FTVMCompute", [](const NodeAttrs& attrs,
                    const Array<Tensor>& inputs,
                    const Array<Tensor>& out_info) {
    return Array<Tensor>{ topi::cast(topi::greater_equal(inputs[0],
                                                         inputs[1]),
                                                         out_info[0]->dtype) };
}, 11);

NNVM_REGISTER_BINARY_BROADCAST_OP(broadcast_less_equal, less_equal)
.add_alias("__less_equal_symbol__")
.describe(R"code(Returns element-wise x <= y of the input arrays with broadcasting.

Example::

   x = [[ 1.,  2.,  3.],
        [ 4.,  5.,  6.]]

   y = [[ 1.],
        [ 5.]]

   broadcast_less_equal(x, y) = [[ 1.,  0.,  0.],
                                 [ 1.,  1.,  0.]]

)code" NNVM_ADD_FILELINE)
.set_attr<FTVMCompute>(
  "FTVMCompute", [](const NodeAttrs& attrs,
                    const Array<Tensor>& inputs,
                    const Array<Tensor>& out_info) {
    return Array<Tensor>{ topi::cast(topi::less_equal(inputs[0],
                                                      inputs[1]),
                                                      out_info[0]->dtype) };
}, 11);

595 596
}  // namespace top
}  // namespace nnvm