int_set.cc 18.2 KB
Newer Older
1
/*!
2 3
 *  Copyright (c) 2017 by Contributors
 * \file int_set.cc
4 5 6
 * \brief The integer set functions
 */
#include <tvm/ir.h>
7
#include <tvm/ir_pass.h>
8
#include <tvm/arithmetic.h>
9
#include <tvm/ir_functor_ext.h>
10
#include <arithmetic/Interval.h>
11
#include <unordered_map>
12 13
#include "compute_expr.h"
#include "int_set_internal.h"
14 15

namespace tvm {
16
namespace arith {
17

18
using HalideIR::Internal::Interval;
19 20
using namespace ir;

21 22 23 24 25 26 27 28 29
inline IntSet IntSet::cover_interval() const {
  if ((*this).as<IntervalSet>()) return *this;
  const StrideSet* s =  (*this).as<StrideSet>();
  if (s) {
    CHECK_NE(s->extents.size(), 0U);
    Expr max = s->base.max;
    for (size_t i = 0; i < s->extents.size(); ++i) {
      max = max + s->extents[i] * s->strides[i] - s->strides[i];
    }
30
    return IntervalSet::make(s->base.min, Simplify(max));
31 32 33 34 35 36 37 38 39 40 41 42 43
  }
  LOG(FATAL) << "cannot convert set " << (*this)->type_key() << " to interval";
  return IntSet::everything();
}

Range IntSet::cover_range(Range max_range) const {
  IntSet temp;
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  if (s_int == nullptr) {
    temp = this->cover_interval();
    s_int = temp.as<IntervalSet>();
  }
  if (s_int->i.is_bounded()) {
44
    return Range::make_by_min_extent(
45 46 47 48
        s_int->i.min, Simplify(s_int->i.max + 1 - s_int->i.min));
  }
  return max_range;
}
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
Expr IntSet::min() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  CHECK(s_int);
  return s_int->i.min;
}

Expr IntSet::max() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  CHECK(s_int);
  return s_int->i.max;
}

bool IntSet::is_nothing() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  return (s_int && s_int->i.is_empty());
}

67 68 69 70
bool IntSet::is_everything() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  return (s_int && s_int->i.is_everything());
}
71

72 73 74
bool IntSet::is_single_point() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  return (s_int && s_int->i.is_single_point());
75 76
}

77 78 79 80 81
bool IntSet::can_prove_positive() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  return (s_int && is_positive_const(ir::Simplify(s_int->i.min)));
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
bool IntSet::can_prove_negative() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  return (s_int && is_negative_const(ir::Simplify(s_int->i.max)));
}

SignType IntSet::sign_type() const {
  if (can_prove_positive()) {
    return kPositive;
  } else if (can_prove_negative()) {
    return kNegative;
  } else if (is_single_point() && is_zero(point_value())) {
    return kZero;
  } else {
    return kUnknown;
  }
}
98 99 100 101 102 103
Expr IntSet::point_value() const {
  const IntervalSet* s_int = (*this).as<IntervalSet>();
  CHECK(s_int && s_int->i.is_single_point());
  return s_int->i.min;
}

104 105 106 107
IntSet IntSet::nothing() {
  return IntervalSet::make(Interval::nothing());
}

108 109
IntSet IntSet::everything() {
  return IntervalSet::make(Interval::everything());
110 111
}

112 113
IntSet IntSet::single_point(Expr x) {
  return IntervalSet::make(Interval::single_point(x));
114 115
}

116 117 118 119 120 121 122 123
IntSet IntSet::range(Range r) {
  // must make sure it can be matched back by MatchRange.
  if (is_one(r->extent)) {
    return IntSet::single_point(r->min);
  }
  if (is_positive_const(r->extent) && is_const(r->min)) {
    return IntervalSet::make(
        r->min, ComputeExpr<Sub>(ComputeExpr<Add>(r->extent, r->min), 1));
124
  }
125
  return IntervalSet::make(r->min, (r->extent + r->min) - 1);
126 127
}

128 129 130 131 132 133 134
IntSet IntSet::interval(Expr min, Expr max) {
  if (min.same_as(max)) {
    return IntSet::single_point(min);
  }
  return IntervalSet::make(min, max);
}

135 136 137 138
inline bool prove_equal(Expr lhs, Expr rhs) {
  return is_zero(ir::Simplify(lhs - rhs));
}

139
// Check if a is created from b.
140 141
bool IntSet::match_range(const Range& b) const {
  const IntSet& a = *this;
142 143 144
  const IntervalSet* a_int = a.as<IntervalSet>();
  if (!a_int) return false;
  const Interval& i = a_int->i;
145 146
  return prove_equal(i.min, b->min) &&
      prove_equal(i.max, ComputeExpr<Sub>(ComputeExpr<Add>(b->extent, b->min), 1));
147 148
}

149 150 151 152 153 154
inline bool MatchPoint(const IntSet& a,
                       const Expr& b) {
  const IntervalSet* a_int = a.as<IntervalSet>();
  if (!a_int) return false;
  const Interval& i = a_int->i;
  return i.is_single_point() && i.min.same_as(b);
155 156
}

157
IntSet Union(const Array<IntSet>& sets) {
158
  if (sets.size() == 0) return IntSet::nothing();
159 160 161 162
  if (sets.size() == 1) return sets[0];
  Interval x = sets[0].cover_interval().as<IntervalSet>()->i;
  for (size_t i = 1; i < sets.size(); ++i) {
    IntSet s = sets[i].cover_interval();
163
    const Interval& y = s.as<IntervalSet>()->i;
164
    x.include(y);
165
  }
166 167
  x.max = ir::Simplify(x.max);
  x.min = ir::Simplify(x.min);
168
  return IntervalSet::make(x);
169 170
}

171 172 173 174 175 176 177 178 179
IntSet Intersect(const Array<IntSet>& sets) {
  Interval x = sets[0].cover_interval().as<IntervalSet>()->i;
  for (size_t i = 1; i < sets.size(); ++i) {
    Interval y = sets[i].cover_interval().as<IntervalSet>()->i;
    x = Interval::make_intersection(x, y);
  }
  return IntervalSet::make(x);
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
// type traits
template<typename OP>
struct is_logical_op {
  static const bool value = false;
};

#define TVM_DECLARE_LOGICAL_OP(OP)              \
  template<>                                    \
  struct is_logical_op<ir::OP> {                \
    static const bool value = true;             \
  };

// interval related.
template<typename OP>
inline IntSet CombineInterval(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<OP>(a.min, b.min));
197
  }
198 199
  LOG(WARNING) << "Return Everything in CombineInterval " << OP::_type_key;
  return IntSet::everything();
200 201
}

202 203 204 205 206 207 208 209
template<>
inline IntSet CombineInterval<Add>(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<Add>(a.min, b.min));
  }
  Interval r = Interval::everything();
  if (a.has_lower_bound() && b.has_lower_bound()) {
    r.min = ComputeExpr<Add>(a.min, b.min);
210
  }
211 212 213 214
  if (a.has_upper_bound() && b.has_upper_bound()) {
    r.max = ComputeExpr<Add>(a.max, b.max);
  }
  return IntervalSet::make(r);
215 216 217
}

template<>
218 219 220 221 222 223 224 225 226 227 228 229
inline IntSet CombineInterval<Sub>(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<Sub>(a.min, b.min));
  }
  Interval r = Interval::everything();
  if (a.has_lower_bound() && b.has_upper_bound()) {
    r.min = ComputeExpr<Sub>(a.min, b.max);
  }
  if (a.has_upper_bound() && b.has_lower_bound()) {
    r.max = ComputeExpr<Sub>(a.max, b.min);
  }
  return IntervalSet::make(r);
230 231
}

232 233 234 235 236 237 238 239 240 241 242 243 244
template<>
inline IntSet CombineInterval<Mul>(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<Mul>(a.min, b.min));
  }
  if (a.is_single_point() && !b.is_single_point()) {
    std::swap(a, b);
  }
  if (b.is_single_point()) {
    if (is_zero(b.min)) return IntSet::single_point(0);
    if (is_one(b.min)) return IntervalSet::make(a);
    Expr e1 = a.has_lower_bound() ? ComputeExpr<Mul>(a.min, b.min) : a.min;
    Expr e2 = a.has_upper_bound() ? ComputeExpr<Mul>(a.max, b.min) : a.max;
245
    // no relaxation is needed in here due to set is inclusive
246 247 248 249 250 251 252 253 254 255 256 257
    // TODO(tqchen): consider convert to StrideSet.
    if (is_positive_const(b.min)) {
      return IntervalSet::make(e1, e2);
    } else if (is_negative_const(b.min)) {
      return IntervalSet::make(e2, e1);
    } else if (a.is_bounded()) {
      Expr cmp = b.min >= make_zero(b.min.type().element_of());
      return IntervalSet::make(select(cmp, e1, e2), select(cmp, e2, e1));
    }
  }
  LOG(WARNING) << "Return Everything in CombineInterval Mul";
  return IntSet::everything();
258 259 260
}

template<>
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
inline IntSet CombineInterval<Div>(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<Div>(a.min, b.min));
  }
  if (b.is_single_point()) {
    if (is_zero(b.min)) {
      LOG(FATAL) << "Divide by zero in CombineInterval Div";
    }
    if (is_one(b.min)) return IntervalSet::make(a);
    Expr e1 = a.has_lower_bound() ? ComputeExpr<Div>(a.min, b.min) : a.min;
    Expr e2 = a.has_upper_bound() ? ComputeExpr<Div>(a.max, b.min) : a.max;
    // no relaxation is needed in here due to set is inclusive
    if (is_positive_const(b.min)) {
      return IntervalSet::make(e1, e2);
    } else if (is_negative_const(b.min)) {
      return IntervalSet::make(e2, e1);
    } else if (a.is_bounded()) {
      Expr cmp = b.min >= make_zero(b.min.type().element_of());
      return IntervalSet::make(select(cmp, e1, e2), select(cmp, e2, e1));
    }
  }
  LOG(WARNING) << "Return Everything in CombineInterval Div";
  return IntSet::everything();
}

template<>
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
inline IntSet CombineInterval<Mod>(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<Mod>(a.min, b.min));
  }
  if (b.is_single_point()) {
    Expr divisor = b.min;
    if (is_zero(divisor)) {
      LOG(FATAL) << "Modular by zero in CombineInterval Mod";
    }
    return IntervalSet::make(make_zero(divisor.type()), divisor - 1);
  }

  LOG(WARNING) << "Return Everything in CombineInterval Mod";
  return IntSet::everything();
}

template<>
304 305 306
inline IntSet CombineInterval<Max>(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<Max>(a.min, b.min));
307
  }
308 309
  return IntervalSet::make(Interval::make_max(a.min, b.min),
                           Interval::make_max(a.max, b.max));
310 311
}

312 313 314 315 316 317 318
template<>
inline IntSet CombineInterval<Min>(Interval a, Interval b) {
  if (a.is_single_point() && b.is_single_point()) {
    return IntSet::single_point(ComputeExpr<Min>(a.min, b.min));
  }
  return IntervalSet::make(Interval::make_min(a.min, b.min),
                           Interval::make_min(a.max, b.max));
319 320
}

321 322 323 324 325
template<typename OP>
inline IntSet CombineInterval_(IntSet a, IntSet b) {
  return CombineInterval<OP>(
      a.as<IntervalSet>()->i, b.as<IntervalSet>()->i);
}
326

327 328 329 330 331
// stride related
inline IntSet AsStrideSet(IntSet a) {
  if (a.as<StrideSet>()) return a;
  const IntervalSet* s = a.as<IntervalSet>();
  CHECK(s->i.is_bounded());
332
  NodePtr<StrideSet> n = make_node<StrideSet>();
333
  n->base = s->i;
334 335
  return IntSet(n);
}
336 337 338 339
template<typename OP>
inline IntSet CombineSets(IntSet a, IntSet b) {
  return CombineInterval_<OP>(a.cover_interval(), b.cover_interval());
}
340

341 342 343 344 345 346 347 348 349 350
template<>
inline IntSet CombineSets<Add>(IntSet a, IntSet b) {
  const IntervalSet* a_int = a.as<IntervalSet>();
  const IntervalSet* b_int = b.as<IntervalSet>();
  if (a_int && is_zero(a_int->i.min)) return b;
  if (b_int && is_zero(b_int->i.min)) return a;
  a = AsStrideSet(a);
  b = AsStrideSet(b);
  const StrideSet* a_stride = a.as<StrideSet>();
  const StrideSet* b_stride = b.as<StrideSet>();
351
  auto n = make_node<StrideSet>(*a_stride);
352 353 354
  for (size_t i = 0; i < b_stride->extents.size(); ++i) {
    n->extents.push_back(b_stride->extents[i]);
    n->strides.push_back(b_stride->strides[i]);
355
  }
356 357 358
  n->base = CombineInterval<Add>(
      a_stride->base, b_stride->base).as<IntervalSet>()->i;
  return IntSet(n);
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
inline IntSet NegateSet(IntSet a) {
  const IntervalSet* a_int = a.as<IntervalSet>();
  if (a_int) {
    if (a_int->i.is_single_point()) {
      return IntSet::single_point(-a_int->i.min);
    } else {
      Interval r = Interval::everything();
      if (a_int->i.has_upper_bound()) {
        r.min = -(a_int->i.max);
      }
      if (a_int->i.has_lower_bound()) {
        r.max = -(a_int->i.min);
      }
      return IntervalSet::make(r);
    }
  } else {
    return NegateSet(a.cover_interval());
  }
379 380
}

381 382 383
template<>
inline IntSet CombineSets<Sub>(IntSet a, IntSet b) {
  return CombineSets<Add>(a, NegateSet(b));
tqchen committed
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
TVM_DECLARE_LOGICAL_OP(And);
TVM_DECLARE_LOGICAL_OP(Or);
TVM_DECLARE_LOGICAL_OP(EQ);
TVM_DECLARE_LOGICAL_OP(NE);
TVM_DECLARE_LOGICAL_OP(GE);
TVM_DECLARE_LOGICAL_OP(GT);
TVM_DECLARE_LOGICAL_OP(LE);
TVM_DECLARE_LOGICAL_OP(LT);
TVM_DECLARE_LOGICAL_OP(Not);

// generic combine operations of two sets
template<typename OP>
inline IntSet Combine(const IntSet& a, const IntSet &b) {
  if (is_logical_op<OP>::value) {
    return IntervalSet::make(0, 1);
  }
  const IntervalSet* a_int = a.as<IntervalSet>();
  const IntervalSet* b_int = b.as<IntervalSet>();
  if (a_int && a_int->i.is_everything()) return a;
  if (b_int && b_int->i.is_everything()) return b;
  if (a_int && b_int) {
    return CombineInterval<OP>(a_int->i, b_int->i);
  }
  if (a_int && !(a_int->i.is_bounded())) {
    return CombineInterval_<OP>(a, b.cover_interval());
  }
  if (b_int && !(b_int->i.is_bounded())) {
    return CombineInterval_<OP>(a.cover_interval(), b);
  }
  return CombineSets<OP>(a, b);
416 417
}

418 419
class IntSetEvaluator :
      public ExprFunctor<IntSet(const Expr&, const Expr&)> {
420
 public:
421 422 423 424 425 426 427 428 429 430
  explicit IntSetEvaluator(
      const std::unordered_map<const Variable*, IntSet>& dom_map,
      bool eval_vec = false)
      : dom_map_(dom_map), eval_vec_(eval_vec) {}
  // Evaluate.
  IntSet Eval(const Expr& e) {
    return this->VisitExpr(e, e);
  }
  IntSet VisitExpr_(const IntImm* op, const Expr& e) final {
    return IntSet::single_point(e);
431
  }
432 433
  IntSet VisitExpr_(const UIntImm* op, const Expr& e) final {
    return IntSet::single_point(e);
434
  }
435 436 437
  IntSet VisitExpr_(const Variable* op, const Expr& e) final {
    auto it = dom_map_.find(op);
    if (it != dom_map_.end()) {
438 439
      return it->second;
    } else {
440
      return IntSet::single_point(e);
441
    }
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  }
  IntSet VisitExpr_(const Add* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Sub* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Mul* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Div* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Mod* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Min* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Max* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const EQ* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const NE* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const LT* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const LE* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const GT* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const GE* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const And* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Or* op, const Expr& e) final {
    return Binary(op, e);
  }
  IntSet VisitExpr_(const Ramp* op, const Expr& e) final {
    CHECK(eval_vec_);
    IntSet base = Eval(op->base);
    int vstride;
    if (GetConstInt(op->stride, &vstride)) {
      Type t = op->base.type();
      if (vstride > 0) {
        return Combine<Add>(
            base,
            IntSet::interval(make_zero(t),
                             make_const(t, vstride * op->lanes -1)));
      } else {
        return Combine<Add>(
            base,
            IntSet::interval(make_const(t, vstride * op->lanes + 1),
                             make_zero(t)));
      }
    }
    LOG(WARNING) << "cannot evaluate set on expression " << e;
    return IntSet::everything();
  }
  IntSet VisitExpr_(const Broadcast* op, const Expr& e) final {
    CHECK(eval_vec_);
    return Eval(op->value);
  }
  IntSet VisitExprDefault_(const Node* op, const Expr& e) final {
    LOG(WARNING) << "cannot evaluate set type " << e->type_key();
    return IntSet::everything();
  }
517

518 519 520 521 522 523 524 525 526
 private:
  template<typename T>
  inline IntSet Binary(const T* op, const Expr& e) {
    IntSet a = this->Eval(op->a);
    IntSet b = this->Eval(op->b);
    if (MatchPoint(a, op->a) && MatchPoint(b, op->b)) {
      return IntSet::single_point(e);
    }
    return Combine<T>(a, b);
527
  }
528 529 530 531

  const std::unordered_map<const Variable*, IntSet>& dom_map_;
  bool eval_vec_{false};
};
532

533 534
IntSet EvalSet(Expr e,
               const std::unordered_map<const Variable*, IntSet>& dom_map) {
535 536 537 538 539 540
  return IntSetEvaluator(dom_map, false).Eval(e);
}

IntSet IntSet::vector(Expr x) {
  std::unordered_map<const Variable*, IntSet> dmap;
  return IntSetEvaluator(dmap, true).Eval(x);
541 542
}

543 544
IntSet EvalSet(Expr e,
               const Map<IterVar, IntSet>& dom_map) {
545
  std::unordered_map<const Variable*, IntSet> dmap;
546
  for (auto kv : dom_map) {
547
    dmap[kv.first->var.as<Variable>()] = kv.second;
548
  }
549
  return EvalSet(e, dmap);
550 551
}

552
IntSet EvalSet(Range r,
553 554
               const std::unordered_map<const Variable*, IntSet>& dom_map) {
  IntSetEvaluator m(dom_map);
555 556 557 558
  IntSet min_set = m.Eval(r->min);
  IntSet ext_set = m.Eval(r->extent).cover_interval();
  const Interval& ei = ext_set.as<IntervalSet>()->i;
  if (!ei.has_upper_bound()) return IntSet::everything();
559
  ext_set = IntervalSet::make(make_zero(ei.max.type()), ComputeExpr<Sub>(ei.max, 1));
560 561 562
  return Combine<Add>(min_set, ext_set);
}

563 564 565 566 567 568 569 570 571 572 573 574
IntSet EvalSet(IntSet s,
               const std::unordered_map<const Variable*, IntSet>& dom_map) {
  IntSetEvaluator m(dom_map);
  s = s.cover_interval();
  const IntervalSet* s_int = s.as<IntervalSet>();
  Expr vmax = s_int->i.has_upper_bound() ?
      m.Eval(s_int->i.max).cover_interval().max() : s_int->i.max;
  Expr vmin = s_int->i.has_lower_bound() ?
      m.Eval(s_int->i.min).cover_interval().min() : s_int->i.min;
  return IntervalSet::make(vmin, vmax);
}

575 576
class SubExprIntSetEvaluator : public IntSetEvaluator {
 public:
577 578
  explicit SubExprIntSetEvaluator(
      const std::unordered_map<const Variable*, IntSet>& dom_map)
579 580
      : IntSetEvaluator(dom_map) {}

581 582 583
  IntSet VisitExpr(const Expr& n, const Expr& e) final {
    IntSet ret = IntSetEvaluator::VisitExpr(n, e);
    expr_map[n] = ret;
584 585 586 587 588 589 590 591 592 593 594 595 596
    return ret;
  }

  ExprIntSetMap expr_map;
};

ExprIntSetMap EvalSetForEachSubExpr(Expr e,
    const std::unordered_map<const Variable*, IntSet>& dom_map) {
  SubExprIntSetEvaluator m(dom_map);
  m.Eval(e);
  return m.expr_map;
}

597 598 599 600 601 602 603 604 605
IntSet EvalSet(Range r,
               const Map<IterVar, IntSet>& dom_map) {
  std::unordered_map<const Variable*, IntSet> dmap;
  for (auto kv : dom_map) {
    dmap[kv.first->var.as<Variable>()] = kv.second;
  }
  return EvalSet(r, dmap);
}

606 607
TVM_STATIC_IR_FUNCTOR(IRPrinter, vtable)
.set_dispatch<IntervalSet>([](const IntervalSet *op, IRPrinter *p) {
608
    p->stream << "interval-set"
609 610 611 612
              << "[" << op->i.min << ", "
              << op->i.max << ']';
  });

613
}  // namespace arith
614
}  // namespace tvm