tvm_vpi.cc 7.79 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*!
 *  Copyright (c) 2017 by Contributors
 * \file tvm_vpi.cc
 * \brief Messages passed around VPI used for simulation.
 */
#include <dmlc/logging.h>
#include <vpi_user.h>
#include <cstdlib>
#include <memory>
#include <queue>
#include "./tvm_vpi.h"
#include "../src/common/pipe.h"

namespace tvm {
namespace vpi {
16
// standard consistency checks
17
static_assert(sizeof(vpiHandle) == sizeof(VPIRawHandle),
18 19 20 21 22 23 24 25 26
              "VPI standard");
// type codes
static_assert(vpiModule == kVPIModule, "VPI standard");
// Property code
static_assert(vpiType == kVPIType, "VPI standard");
static_assert(vpiFullName == kVPIFullName, "VPI standard");
static_assert(vpiSize == kVPISize, "VPI standard");
static_assert(vpiDefName == kVPIDefName, "VPI standard");

27 28 29 30 31 32 33 34 35 36 37
// IPC client for VPI
class IPCClient {
 public:
  // constructor
  IPCClient(int64_t hread, int64_t hwrite)
      : reader_(hread), writer_(hwrite) {
  }
  void Init() {
    vpiHandle argv = vpi_handle(vpiSysTfCall, 0);
    vpiHandle arg_iter = vpi_iterate(vpiArgument, argv);
    clock_ = vpi_scan(arg_iter);
38 39 40 41 42
    std::vector<VPIRawHandle> handles;
    while (vpiHandle h = vpi_scan(arg_iter)) {
      handles.push_back(h);
    }
    writer_.Write(handles);
43 44 45
    PutInt(clock_, 0);
  }
  int Callback() {
46
    if (!GetInt(clock_)) {
47
      try {
48
        return AtNegEdge();
49 50 51 52 53 54 55 56 57 58 59
      } catch (const std::runtime_error& e) {
        reader_.Close();
        writer_.Close();
        vpi_printf("ERROR: encountered %s\n", e.what());
        vpi_control(vpiFinish, 1);
        return 0;
      }
    } else {
      return 0;
    }
  }
60 61 62 63 64
  // called at neg edge.
  int AtNegEdge() {
    // This is actually called at neg-edge
    // The put values won't take effect until next neg-edge.
    // This allow us to see the registers before snc
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    writer_.Write(kPosEdgeTrigger);
    VPICallCode rcode;
    VPIRawHandle handle;
    int32_t index, value;

    while (true) {
      CHECK(reader_.Read(&rcode));
      switch (rcode) {
        case kGetHandleByName: {
          std::string str;
          CHECK(reader_.Read(&str));
          CHECK(reader_.Read(&handle));
          handle = vpi_handle_by_name(
              str.c_str(), static_cast<vpiHandle>(handle));
          writer_.Write(kSuccess);
          writer_.Write(handle);
          break;
        }
        case kGetHandleByIndex: {
          CHECK(reader_.Read(&handle));
          CHECK(reader_.Read(&index));
          handle = vpi_handle_by_index(
              static_cast<vpiHandle>(handle), index);
          writer_.Write(kSuccess);
          writer_.Write(handle);
          break;
        }
92 93 94 95 96 97 98 99 100 101 102
        case kGetStrProp: {
          CHECK(reader_.Read(&value));
          CHECK(reader_.Read(&handle));
          std::string prop = vpi_get_str(
              value, static_cast<vpiHandle>(handle));
          writer_.Write(kSuccess);
          writer_.Write(prop);
          break;
        }
        case kGetIntProp: {
          CHECK(reader_.Read(&value));
103
          CHECK(reader_.Read(&handle));
104
          value = vpi_get(value, static_cast<vpiHandle>(handle));
105
          writer_.Write(kSuccess);
106
          writer_.Write(value);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
          break;
        }
        case kGetInt32: {
          CHECK(reader_.Read(&handle));
          value = GetInt(static_cast<vpiHandle>(handle));
          writer_.Write(kSuccess);
          writer_.Write(value);
          break;
        }
        case kPutInt32: {
          CHECK(reader_.Read(&handle));
          CHECK(reader_.Read(&value));
          CHECK(handle != clock_) << "Cannot write to clock";
          PutInt(static_cast<vpiHandle>(handle), value);
          writer_.Write(kSuccess);
          break;
        }
        case kGetVec: {
          CHECK(reader_.Read(&handle));
          vpiHandle h = static_cast<vpiHandle>(handle);
          int bits = vpi_get(vpiSize, h);
          int nwords = (bits + 31) / 32;
          s_vpi_value  value_s;
          value_s.format = vpiVectorVal;
          vpi_get_value(h, &value_s);
          vec_buf_.resize(nwords);
          for (size_t i = 0; i < vec_buf_.size(); ++i) {
            vec_buf_[i].aval = value_s.value.vector[i].aval;
            vec_buf_[i].bval = value_s.value.vector[i].bval;
          }
          writer_.Write(kSuccess);
          writer_.Write(vec_buf_);
          break;
        }
        case kPutVec: {
          CHECK(reader_.Read(&handle));
          CHECK(reader_.Read(&vec_buf_));
          CHECK(handle != clock_) << "Cannot write to clock";
          vpiHandle h = static_cast<vpiHandle>(handle);
146
          svec_buf_.resize(vec_buf_.size());
147 148 149 150 151
          for (size_t i = 0; i < vec_buf_.size(); ++i) {
            svec_buf_[i].aval = vec_buf_[i].aval;
            svec_buf_[i].bval = vec_buf_[i].bval;
          }
          s_vpi_value  value_s;
152 153 154
          s_vpi_time time_s;
          time_s.type = vpiSimTime;
          time_s.high = 0;
155
          time_s.low  = 10;
156 157
          value_s.format = vpiVectorVal;
          value_s.value.vector = &svec_buf_[0];
158
          vpi_put_value(h, &value_s, &time_s, vpiTransportDelay);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
          writer_.Write(kSuccess);
          break;
        }
        case kYield: {
          writer_.Write(kSuccess);
          return 0;
        }
        case kShutDown : {
          writer_.Write(kSuccess);
          vpi_control(vpiFinish, 0);
          return 0;
        }
      }
    }
  }
  // Create a new FSM from ENV.
  static IPCClient* Create() {
    const char* d_read = getenv("TVM_DREAD_PIPE");
    const char* d_write = getenv("TVM_DWRITE_PIPE");
    const char* h_read = getenv("TVM_HREAD_PIPE");
    const char* h_write = getenv("TVM_HWRITE_PIPE");
    if (d_write == nullptr ||
        d_read == nullptr ||
        h_read == nullptr ||
        h_write == nullptr) {
      vpi_printf("ERROR: need environment var TVM_READ_PIPE, TVM_WRITE_PIPE\n");
      vpi_control(vpiFinish, 1);
      return nullptr;
    }
    // close host side pipe.
    common::Pipe(atoi(h_read)).Close();
    common::Pipe(atoi(h_write)).Close();
    IPCClient* client = new IPCClient(atoi(d_read), atoi(d_write));
    client->Init();
    return client;
  }
  // Get integer from handle.
  static int GetInt(vpiHandle h) {
    s_vpi_value  value_s;
    value_s.format = vpiIntVal;
    vpi_get_value(h, &value_s);
    return value_s.value.integer;
  }
  // Put integer into handle.
  static void PutInt(vpiHandle h, int value) {
    s_vpi_value  value_s;
205 206 207
    s_vpi_time time_s;
    time_s.type = vpiSimTime;
    time_s.high = 0;
208
    time_s.low  = 10;
209 210
    value_s.format = vpiIntVal;
    value_s.value.integer = value;
211
    vpi_put_value(h, &value_s, &time_s, vpiTransportDelay);
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
  }
  // Handles
  vpiHandle clock_;
  // the communicator
  common::Pipe reader_, writer_;
  // data buf
  std::vector<VPIVecVal> vec_buf_;
  std::vector<s_vpi_vecval> svec_buf_;
};
}  // namespace vpi
}  // namespace tvm

extern "C" {
static PLI_INT32 tvm_host_clock_cb(p_cb_data cb_data) {
  return reinterpret_cast<tvm::vpi::IPCClient*>(
      cb_data->user_data)->Callback();
}

static PLI_INT32 tvm_init(char* cb) {
  s_vpi_value  value_s;
  s_vpi_time  time_s;
  s_cb_data  cb_data_s;
  tvm::vpi::IPCClient* client = tvm::vpi::IPCClient::Create();
  if (client) {
    cb_data_s.user_data = reinterpret_cast<char*>(client);
    cb_data_s.reason = cbValueChange;
    cb_data_s.cb_rtn = tvm_host_clock_cb;
    cb_data_s.time = &time_s;
    cb_data_s.value = &value_s;
    time_s.type = vpiSuppressTime;
    value_s.format = vpiIntVal;
    cb_data_s.obj  = client->clock_;
    vpi_register_cb(&cb_data_s);
  } else {
    vpi_printf("ERROR: canot initalize host\n");
    vpi_control(vpiFinish, 1);
  }
  return 0;
}

void tvm_vpi_register() {
  s_vpi_systf_data tf_data;
  tf_data.type = vpiSysTask;
  tf_data.tfname = "$tvm_session";
  tf_data.calltf = tvm_init;
  tf_data.compiletf = nullptr;
  tf_data.sizetf = nullptr;
  tf_data.user_data = nullptr;
  vpi_register_systf(&tf_data);
}

void (*vlog_startup_routines[])() = {
  tvm_vpi_register,
  0
};
}  // extern "C"