conv_forward.cc 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
/*!
 *  Copyright (c) 2017 by Contributors
 * \file Use external cudnn utils function
 */
#include <tvm/runtime/registry.h>
#include <tvm/runtime/util.h>
#include <tvm/runtime/device_api.h>
#include "cudnn_utils.h"

namespace tvm {
namespace contrib {

using namespace runtime;


TVM_REGISTER_GLOBAL("tvm.contrib.cudnn.conv2d.forward")
.set_body([](TVMArgs args, TVMRetValue *ret) {
  int mode = args[0];
  int format = args[1];
  int algo = args[2];
  int pad_h = args[3];
  int pad_w = args[4];
  int stride_h = args[5];
  int stride_w = args[6];
  int dilation_h = args[7];
  int dilation_w = args[8];
  DLTensor *x = args[9];
  DLTensor *w = args[10];
  DLTensor *y = args[11];
  CuDNNThreadEntry* entry_ptr = CuDNNThreadEntry::ThreadLocal();
  // Set Mode
  entry_ptr->conv_entry.mode = static_cast<cudnnConvolutionMode_t>(mode);
  // Set Format
  entry_ptr->conv_entry.tensor_format = static_cast<cudnnTensorFormat_t>(format);
  // Set Algo
  entry_ptr->conv_entry.fwd_algo = static_cast<cudnnConvolutionFwdAlgo_t>(algo);
  // Set Ctx
  entry_ptr->conv_entry.ctx = x->ctx;
  // Set Data Type
  entry_ptr->conv_entry.data_type = CuDNNDataType::DLTypeToCuDNNType(x->dtype);
  // Set Desc
  CUDNN_CALL(cudnnSetConvolution2dDescriptor(entry_ptr->conv_entry.conv_desc,
                                             pad_h,
                                             pad_w,
                                             stride_h,
                                             stride_w,
                                             dilation_h,
                                             dilation_w,
                                             entry_ptr->conv_entry.mode,
                                             entry_ptr->conv_entry.data_type));
  // Set Filter
  CUDNN_CALL(cudnnSetFilter4dDescriptor(entry_ptr->conv_entry.filter_desc,
                                        entry_ptr->conv_entry.data_type,
                                        CUDNN_TENSOR_NCHW,
                                        static_cast<int>(w->shape[0]),
                                        static_cast<int>(w->shape[1]),
                                        static_cast<int>(w->shape[2]),
                                        static_cast<int>(w->shape[3])));
  // Set Input
  CUDNN_CALL(cudnnSetTensor4dDescriptor(entry_ptr->conv_entry.input_desc,
                                        entry_ptr->conv_entry.tensor_format,
                                        entry_ptr->conv_entry.data_type,
                                        static_cast<int>(x->shape[0]),
                                        static_cast<int>(x->shape[1]),
                                        static_cast<int>(x->shape[2]),
                                        static_cast<int>(x->shape[3])));
  // Set Output
  CUDNN_CALL(cudnnSetTensor4dDescriptor(entry_ptr->conv_entry.output_desc,
                                        entry_ptr->conv_entry.tensor_format,
                                        entry_ptr->conv_entry.data_type,
                                        static_cast<int>(y->shape[0]),
                                        static_cast<int>(y->shape[1]),
                                        static_cast<int>(y->shape[2]),
                                        static_cast<int>(y->shape[3])));
  // Set workspace
  size_t workspace_size = 0;
  CUDNN_CALL(cudnnGetConvolutionForwardWorkspaceSize(entry_ptr->handle,
                                                     entry_ptr->conv_entry.input_desc,
                                                     entry_ptr->conv_entry.filter_desc,
                                                     entry_ptr->conv_entry.conv_desc,
                                                     entry_ptr->conv_entry.output_desc,
                                                     entry_ptr->conv_entry.fwd_algo,
                                                     &workspace_size));
  entry_ptr->conv_entry.UpdateWorkspace(workspace_size);
  CUDNN_CALL(cudnnConvolutionForward(entry_ptr->handle,
                                     CuDNNDataType::GetConst<1>(entry_ptr->conv_entry.data_type),
                                     entry_ptr->conv_entry.input_desc,
                                     x->data,
                                     entry_ptr->conv_entry.filter_desc,
                                     w->data,
                                     entry_ptr->conv_entry.conv_desc,
                                     entry_ptr->conv_entry.fwd_algo,
                                     entry_ptr->conv_entry.workspace,
                                     workspace_size,
                                     CuDNNDataType::GetConst<0>(entry_ptr->conv_entry.data_type),
                                     entry_ptr->conv_entry.output_desc,
                                     y->data));
});


TVM_REGISTER_GLOBAL("tvm.contrib.cudnn.conv2d.output_shape")
.set_body([](TVMArgs args, TVMRetValue *ret) {
  CuDNNThreadEntry* entry_ptr = CuDNNThreadEntry::ThreadLocal();
  int format = args[0];
  int pad_h = args[1];
  int pad_w = args[2];
  int stride_h = args[3];
  int stride_w = args[4];
  int dilation_h = args[5];
  int dilation_w = args[6];
  int x_dim0 = args[7];
  int x_dim1 = args[8];
  int x_dim2 = args[9];
  int x_dim3 = args[10];
  int w_dim0 = args[11];
  int w_dim1 = args[12];
masahi committed
117
  int w_dim2 = args[13];
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  int w_dim3 = args[14];
  void *out_shape = args[15];
  // Set Format
  entry_ptr->conv_entry.tensor_format = static_cast<cudnnTensorFormat_t>(format);
  // conv desc
  CUDNN_CALL(cudnnSetConvolution2dDescriptor(entry_ptr->conv_entry.conv_desc,
                                             pad_h,
                                             pad_w,
                                             stride_h,
                                             stride_w,
                                             dilation_h,
                                             dilation_w,
                                             CUDNN_CROSS_CORRELATION,
                                             entry_ptr->conv_entry.data_type));
  // input desc
  CUDNN_CALL(cudnnSetTensor4dDescriptor(entry_ptr->conv_entry.input_desc,
                                        entry_ptr->conv_entry.tensor_format,
                                        CUDNN_DATA_FLOAT,
                                        x_dim0,
                                        x_dim1,
                                        x_dim2,
                                        x_dim3));
  // filter desc
  CUDNN_CALL(cudnnSetFilter4dDescriptor(entry_ptr->conv_entry.filter_desc,
                                        CUDNN_DATA_FLOAT,
                                        CUDNN_TENSOR_NCHW,
                                        w_dim0,
                                        w_dim1,
                                        w_dim2,
                                        w_dim3));

  CUDNN_CALL(cudnnGetConvolution2dForwardOutputDim(entry_ptr->conv_entry.conv_desc,
                                                   entry_ptr->conv_entry.input_desc,
                                                   entry_ptr->conv_entry.filter_desc,
                                                   static_cast<int*>(out_shape),
                                                   static_cast<int*>(out_shape) + 1,
                                                   static_cast<int*>(out_shape) + 2,
                                                   static_cast<int*>(out_shape) + 3));
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
});


TVM_REGISTER_GLOBAL("tvm.contrib.cudnn.conv2d.find_algo")
.set_body([](TVMArgs args, TVMRetValue *ret) {
  CuDNNThreadEntry* entry_ptr = CuDNNThreadEntry::ThreadLocal();
  int format = args[0];
  int pad_h = args[1];
  int pad_w = args[2];
  int stride_h = args[3];
  int stride_w = args[4];
  int dilation_h = args[5];
  int dilation_w = args[6];
  int x_dim0 = args[7];
  int x_dim1 = args[8];
  int x_dim2 = args[9];
  int x_dim3 = args[10];
  int w_dim0 = args[11];
  int w_dim1 = args[12];
  int w_dim2 = args[13];
  int w_dim3 = args[14];
  int y_dim0 = args[15];
  int y_dim1 = args[16];
  int y_dim2 = args[17];
  int y_dim3 = args[18];

  // Set Format
  entry_ptr->conv_entry.tensor_format = static_cast<cudnnTensorFormat_t>(format);
  // conv desc
  CUDNN_CALL(cudnnSetConvolution2dDescriptor(entry_ptr->conv_entry.conv_desc,
                                             pad_h,
                                             pad_w,
                                             stride_h,
                                             stride_w,
                                             dilation_h,
                                             dilation_w,
                                             CUDNN_CROSS_CORRELATION,
                                             entry_ptr->conv_entry.data_type));
  // input desc
  CUDNN_CALL(cudnnSetTensor4dDescriptor(entry_ptr->conv_entry.input_desc,
                                        entry_ptr->conv_entry.tensor_format,
                                        CUDNN_DATA_FLOAT,
                                        x_dim0,
                                        x_dim1,
                                        x_dim2,
                                        x_dim3));
  // filter desc
  CUDNN_CALL(cudnnSetFilter4dDescriptor(entry_ptr->conv_entry.filter_desc,
                                        CUDNN_DATA_FLOAT,
                                        CUDNN_TENSOR_NCHW,
                                        w_dim0,
                                        w_dim1,
                                        w_dim2,
                                        w_dim3));

  // output desc
  CUDNN_CALL(cudnnSetTensor4dDescriptor(entry_ptr->conv_entry.output_desc,
                                        entry_ptr->conv_entry.tensor_format,
                                        entry_ptr->conv_entry.data_type,
                                        y_dim0,
                                        y_dim1,
                                        y_dim2,
                                        y_dim3));

  int returned_algo_count = 0;
  cudnnConvolutionFwdAlgoPerf_t perf_results[CUDNN_CONVOLUTION_FWD_ALGO_COUNT];
  CUDNN_CALL(cudnnFindConvolutionForwardAlgorithm(entry_ptr->handle,
                                                  entry_ptr->conv_entry.input_desc,
                                                  entry_ptr->conv_entry.filter_desc,
                                                  entry_ptr->conv_entry.conv_desc,
                                                  entry_ptr->conv_entry.output_desc,
                                                  CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
                                                  &returned_algo_count,
                                                  perf_results));

  const std::vector<std::string> fwd_algo_names{
      "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM",
      "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM",
      "CUDNN_CONVOLUTION_FWD_ALGO_GEMM",
      "CUDNN_CONVOLUTION_FWD_ALGO_DIRECT",
      "CUDNN_CONVOLUTION_FWD_ALGO_FFT",
      "CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING",
      "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD",
      "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED"
  };

  auto best_algo = perf_results[0].algo;
  LOG(INFO) << "\tCUDNN Found " << returned_algo_count
            << " fwd algorithms, choosing " << fwd_algo_names[best_algo];
  for (int i = 0; i < returned_algo_count; ++i) {
    LOG(INFO) << "\t\t" << i << ") " << fwd_algo_names[perf_results[i].algo]
              << " - time: " << perf_results[i].time << " ms"
              << ", Memory: " << perf_results[i].memory;
  }

  ret[0] = best_algo;
});
253 254 255

}  // namespace contrib
}  // namespace tvm