init.py 4.43 KB
Newer Older
1
"""Initializer of parameters."""
2 3
import numpy as np

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
import tvm
from tvm import relay

class Initializer(object):
    """The base class of an initializer."""
    def __init__(self, **kwargs):
        self._kwargs = kwargs

    def __call__(self, desc, arr):
        """Initialize an array

        Parameters
        ----------
        desc : str
            Initialization pattern descriptor.

        arr : NDArray
            The array to be initialized.
        """
        if desc.endswith('weight'):
            self._init_weight(desc, arr)
        elif desc.endswith('bias'):
            self._init_bias(desc, arr)
        elif desc.endswith('gamma'):
            self._init_gamma(desc, arr)
        elif desc.endswith('beta'):
            self._init_beta(desc, arr)
        elif desc.endswith('mean'):
            self._init_mean(desc, arr)
        elif desc.endswith('var'):
            self._init_var(desc, arr)
        else:
            self._init_default(desc, arr)

    def _init_bias(self, _, arr):
        arr[:] = 0.0

    def _init_gamma(self, _, arr):
        arr[:] = 1.0

    def _init_beta(self, _, arr):
        arr[:] = 0.0

    def _init_mean(self, _, arr):
        arr[:] = 0.0

    def _init_var(self, _, arr):
        arr[:] = 1.0

    def _init_weight(self, name, arr):
        """Abstract method to Initialize weight."""
        raise NotImplementedError("Must override it")

    def _init_default(self, name, _):
        raise ValueError(
            'Unknown initialization pattern for %s. ' \
            'Default initialization is now limited to '\
            '"weight", "bias", "gamma" (1.0), and "beta" (0.0).' \
            'Please use mx.sym.Variable(init=mx.init.*) to set initialization pattern' % name)


class Xavier(Initializer):
    """ "Xavier" initialization for weights

    Parameters
    ----------
    rnd_type: str, optional
        Random generator type, can be ``'gaussian'`` or ``'uniform'``.

    factor_type: str, optional
        Can be ``'avg'``, ``'in'``, or ``'out'``.

    magnitude: float, optional
        Scale of random number.
    """
    def __init__(self, rnd_type="uniform", factor_type="avg", magnitude=3):
        super(Xavier, self).__init__(rnd_type=rnd_type,
                                     factor_type=factor_type,
                                     magnitude=magnitude)
        self.rnd_type = rnd_type
        self.factor_type = factor_type
        self.magnitude = float(magnitude)

    def _init_weight(self, name, arr):
        shape = arr.shape
        hw_scale = 1.
        if len(shape) < 2:
            raise ValueError('Xavier initializer cannot be applied to vector {0}. It requires at'
                             ' least 2D.'.format(name))
        if len(shape) > 2:
            hw_scale = np.prod(shape[2:])
        fan_in, fan_out = shape[1] * hw_scale, shape[0] * hw_scale
        factor = 1.
        if self.factor_type == "avg":
            factor = (fan_in + fan_out) / 2.0
        elif self.factor_type == "in":
            factor = fan_in
        elif self.factor_type == "out":
            factor = fan_out
        else:
            raise ValueError("Incorrect factor type")
        # Hack for mobilenet, because there is less connectivity
        if "depthwise" in name:
107
            factor = hw_scale
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        scale = np.sqrt(self.magnitude / factor)
        if self.rnd_type == "uniform":
            arr[:] = np.random.uniform(-scale, scale, size=arr.shape)
        else:
            raise ValueError("Unknown random type")


def create_workload(net, initializer=None, seed=0):
    """Helper function to create benchmark image classification workload.

    Parameters
    ----------
    net : tvm.relay.Function
        The selected function of the network.

    initializer : Initializer
        The initializer used

    seed : int
        The seed used in initialization.

    Returns
    -------
    net : tvm.relay.Function
        The updated dataflow

    params : dict of str to NDArray
        The parameters.
    """
    net = relay.ir_pass.infer_type(net)
    shape_dict = {
        v.name_hint : v.checked_type for v in net.params}
    net.astext()
    np.random.seed(seed)
    initializer = initializer if initializer else Xavier()
    params = {}
    for k, v in shape_dict.items():
        if k == "data":
            continue
        init_value = np.zeros(v.concrete_shape).astype(v.dtype)
        initializer(k, init_value)
        params[k] = tvm.nd.array(init_value, ctx=tvm.cpu(0))
    return net, params