vpi_device_api.cc 12.3 KB
Newer Older
1 2 3 4 5 6
/*!
 *  Copyright (c) 2017 by Contributors
 * \file vpi_device.cc
 * \brief Simulated VPI RAM device.
 */
#include <tvm/runtime/registry.h>
7
#include <tvm/runtime/device_api.h>
8 9 10 11 12 13 14 15 16 17 18
#include <tvm/packed_func_ext.h>
#include <cstdlib>
#include <unordered_map>
#include <map>
#include <queue>
#include "./vpi_session.h"

namespace tvm {
namespace codegen {

/*! \brief Simulated device ram */
19
class VPIDeviceAPI final : public runtime::DeviceAPI {
20 21 22 23 24 25 26 27 28
 public:
  VPIDeviceAPI() {
    const char* s_ram_size = getenv("TVM_VPI_RAM_SIZE_MB");
    // 16 MB ram.
    int ram_size = 32;
    if (s_ram_size != nullptr) {
      ram_size = atoi(s_ram_size);
    }
    ram_.resize(ram_size << 17);
29
    ram_head_ = runtime::kAllocAlignment;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    ram_max_ = ram_.size() * sizeof(int64_t);
    LOG(INFO) << "Initialize VPI simulated ram " << ram_size << "MB ...";
  }
  // convert address to real address
  void* RealAddr(const void* addr, size_t size) const {
    int64_t ptr = reinterpret_cast<int64_t>(addr);
    CHECK_LE(ptr + size, ram_max_)
        << "VPI: Illegal memory access";
    return (char*)(&ram_[0]) + ptr;  // NOLINT(*)
  }
  // convert address to real address
  void* RealAddrSafe(const void* addr, size_t size) const {
    int64_t ptr = reinterpret_cast<int64_t>(addr);
    if (ptr + size >= ram_max_) return nullptr;
    return (char*)(&ram_[0]) + ptr;  // NOLINT(*)
  }
46 47
  void SetDevice(TVMContext ctx) final {}
  void GetAttr(TVMContext ctx, runtime::DeviceAttrKind kind, TVMRetValue* rv) final {
48 49 50 51
    if (kind == runtime::kExist) {
      *rv = 1;
    }
  }
52 53
  void* AllocDataSpace(TVMContext ctx, size_t size, size_t alignment) final {
    // always align to 32 bytes at least.
54 55
    CHECK_LE(alignment, runtime::kAllocAlignment);
    alignment = runtime::kAllocAlignment;
56 57 58 59 60 61 62 63 64 65 66 67
    // always allocate block with aligned size.
    size += alignment - (size % alignment);
    // This is not thread safe, but fine for simulation.
    auto it = free_blocks_.lower_bound(size);
    if (it != free_blocks_.end()) {
      size_t head = it->second;
      free_blocks_.erase(it);
      Block& b = block_map_.at(head);
      CHECK(b.is_free);
      b.is_free = false;
      return reinterpret_cast<void*>(head);
    } else {
68
      CHECK_EQ(ram_head_ % runtime::kAllocAlignment, 0U);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
      Block b;
      b.size = size;
      b.is_free = false;
      CHECK_LE(ram_head_ + size, ram_max_)
          << "VPI: Out of memory";
      block_map_[ram_head_] = b;
      void* ret = reinterpret_cast<void*>(ram_head_);
      ram_head_ += size;
      return ret;
    }
  }
  void FreeDataSpace(TVMContext ctx, void* ptr) final {
    size_t head = reinterpret_cast<size_t>(ptr);
    Block& b = block_map_.at(head);
    b.is_free = true;
    free_blocks_.insert({b.size, head});
  }
  void CopyDataFromTo(const void* from,
87
                      size_t from_offset,
88
                      void* to,
89
                      size_t to_offset,
90 91 92 93 94
                      size_t size,
                      TVMContext ctx_from,
                      TVMContext ctx_to,
                      TVMStreamHandle stream) final {
    if (static_cast<int>(ctx_from.device_type) == kVPI) {
95
      from = RealAddr(static_cast<const char*>(from) + from_offset, size);
96 97
    }
    if (static_cast<int>(ctx_to.device_type) == kVPI) {
98
      to = RealAddr(static_cast<char*>(to) + to_offset, size);
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    }
    memcpy(to, from, size);
  }
  void StreamSync(TVMContext ctx, TVMStreamHandle stream) final {
  }
  static VPIDeviceAPI* Global() {
    static VPIDeviceAPI inst;
    return &inst;
  }

 private:
  // allocator block for reuse
  struct Block {
    // The size of the block
    size_t size;
    // Whether this is already freed.
    bool is_free{true};
  };
  // head -> blocks
  std::unordered_map<size_t, Block> block_map_;
  // size -> free heads.
  std::multimap<size_t, size_t> free_blocks_;
  // top of the ram
  size_t ram_head_, ram_max_;
  // The ram space.
  std::vector<int64_t> ram_;
};

/* !\brief vector buffer to help read/write */
class VPIVecBuffer {
 public:
  // Put data into vec
  void put_vec(const VPIHandle& h, size_t nwords,
               const void* dptr, size_t size) {
    wbuf_.resize(nwords);
    vbuf_.resize(nwords);
    memcpy(&wbuf_[0], dptr, size);
    for (size_t i = 0; i < nwords; ++i) {
      vbuf_[i].aval = wbuf_[i];
      vbuf_[i].bval = 0;
    }
    h.put_vec(vbuf_);
  }
  // read data from vec.
  void get_vec(const VPIHandle& h, void* dptr, size_t size) {
    h.get_vec(&vbuf_);
    wbuf_.resize(vbuf_.size());
    for (size_t i = 0; i < vbuf_.size(); ++i) {
      wbuf_[i] = vbuf_[i].aval;
      CHECK_EQ(vbuf_[i].bval, 0)
          << "Write indetermined value to RAM";
    }
    memcpy(dptr, &wbuf_[0], size);
  }

 private:
  // Temporal buffers.
  std::vector<int32_t> wbuf_;
  std::vector<vpi::VPIVecVal> vbuf_;
};

/*!
 * \brief Memory interface for VPI memory.
 */
class VPIMemoryInterface {
 public:
  // Initialize the FSM.
  void Init(VPIHandle module) {
    device_ = VPIDeviceAPI::Global();
    in_rst_ = module["rst"];
    // read ports
    in_read_dequeue_ = module["read_en"];
    out_reg_read_data_ = module["reg_read_data"];
    // Write ports
    in_write_enqueue_ = module["write_en"];
    in_write_data_ = module["write_data_in"];
    // Status port
    out_reg_read_valid_ = module["reg_read_valid"];
    out_reg_write_ready_ = module["reg_write_ready"];
    // memory control signal
    ctrl_read_req_ = module["host_read_req"];
    ctrl_read_addr_ = module["host_read_addr"];
    ctrl_read_size_ = module["host_read_size"];
    ctrl_write_req_ = module["host_write_req"];
    ctrl_write_addr_ = module["host_write_addr"];
    ctrl_write_size_ = module["host_write_size"];
    // The bit and bytes;
    size_t read_bits =  out_reg_read_data_.size();
    size_t write_bits =  in_write_data_.size();
    CHECK_EQ(read_bits % 8U, 0)
        << "Read/write unit have to be multiple of 8 bit(bytes)";
    CHECK_EQ(write_bits % 8U, 0)
        << "Read/write unit have to be multiple of 8 bit(bytes)";
    read_unit_bytes_ = read_bits / 8U;
    write_unit_bytes_ = write_bits / 8U;
  }
195 196
  // Callback at neg-edge.
  void AtNegEdge() {
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    // reset
    if (in_rst_.get_int()) {
      CHECK_EQ(pending_read_.size, 0U);
      CHECK_EQ(pending_write_.size, 0U);
      CHECK(read_tasks_.empty());
      CHECK(write_tasks_.empty());
      out_reg_write_ready_.put_int(0);
      out_reg_read_valid_.put_int(0);
      return;
    }
    // read write tasks
    if (in_read_dequeue_.get_int() || !out_reg_read_valid_.get_int()) {
      ReadFromFIFO();
    }
    // update write full
    if (in_write_enqueue_.get_int()) {
      CHECK(out_reg_write_ready_.get_int());
      WriteToFIFO();
    }
    if (pending_write_.size || write_tasks_.size()) {
      out_reg_write_ready_.put_int(1);
    } else {
      out_reg_write_ready_.put_int(0);
    }
    // Control tasks
    if (ctrl_read_req_.get_int()) {
      FIFOTask tsk;
      tsk.addr = reinterpret_cast<char*>(ctrl_read_addr_.get_int());
      tsk.size = static_cast<size_t>(ctrl_read_size_.get_int());
      read_tasks_.push(tsk);
    }
    // Control tasks
    if (ctrl_write_req_.get_int()) {
      FIFOTask tsk;
      tsk.addr = reinterpret_cast<char*>(ctrl_write_addr_.get_int());
      tsk.size = static_cast<size_t>(ctrl_write_size_.get_int());
      write_tasks_.push(tsk);
    }
  }

 private:
  // The FIFO tasks
  struct FIFOTask {
    char* addr{nullptr};
    size_t size{0};
  };
  // handle dequeue event
  void ReadFromFIFO() {
    if (pending_read_.size == 0) {
      if (!read_tasks_.empty()) {
        pending_read_ = read_tasks_.front();
        read_tasks_.pop();
        // translate to real memory addr
        pending_read_.addr = static_cast<char*>(
            device_->RealAddr(
                pending_read_.addr, pending_read_.size));
      }
    }
    if (pending_read_.size != 0) {
      // The size to be read
      size_t nread = std::min(pending_read_.size, read_unit_bytes_);
      // Read from the data
      size_t nwords = (read_unit_bytes_ + 3) / 4;
      vbuf_.put_vec(out_reg_read_data_, nwords,
                    pending_read_.addr, nread);
      // Update the pointer
      pending_read_.size -= nread;
      pending_read_.addr += nread;
      // read into the vector
      out_reg_read_valid_.put_int(1);
    } else {
      out_reg_read_valid_.put_int(0);
    }
  }
  // handle write event
  void WriteToFIFO() {
    if (pending_write_.size == 0) {
      if (!write_tasks_.empty()) {
        pending_write_ = write_tasks_.front();
        write_tasks_.pop();
        // translate to real memory addr
        pending_write_.addr = static_cast<char*>(
            device_->RealAddr(
                pending_write_.addr, pending_write_.size));
      }
    }
    if (pending_write_.size != 0) {
      // write to the ram.
      size_t nwrite = std::min(pending_write_.size, write_unit_bytes_);
      vbuf_.get_vec(in_write_data_, pending_write_.addr, nwrite);
      // Update the pointer
      pending_write_.size -= nwrite;
      pending_write_.addr += nwrite;
    }
  }
  // Device API
  VPIDeviceAPI* device_{nullptr};
  // Input clock and reset
  VPIHandle in_rst_;
  // Read FIFO signal
  VPIHandle in_read_dequeue_;
  // Write FIFO signal
  VPIHandle in_write_enqueue_;
  VPIHandle in_write_data_;
  // Read memory controler signals
  VPIHandle ctrl_read_req_;
  VPIHandle ctrl_read_addr_;
  VPIHandle ctrl_read_size_;
  // Write memory controler signal signals
  VPIHandle ctrl_write_req_;
  VPIHandle ctrl_write_addr_;
  VPIHandle ctrl_write_size_;
  // Read FIFO outputs
  VPIHandle out_reg_read_data_;
  VPIHandle out_reg_read_valid_;
  // Write FIFO outputs
  VPIHandle out_reg_write_ready_;
  // Size of current pending read.
  FIFOTask pending_read_;
  FIFOTask pending_write_;
  // The read/write task queues.
  std::queue<FIFOTask> read_tasks_;
  std::queue<FIFOTask> write_tasks_;
  // Unit bytes for read/writing
  size_t read_unit_bytes_;
  size_t write_unit_bytes_;
  // Temporal buffers.
  VPIVecBuffer vbuf_;
};

// Read only memory map.
class VPIMemMapBase {
 public:
  // Initialize the FSM.
  void Init(VPIHandle module, const std::string& data_port) {
    device_ = VPIDeviceAPI::Global();
    // intiatialize the connections
    rst_ = module["rst"];
    addr_ = module["addr"];
    data_ = module[data_port];
    mmap_addr_ = module["mmap_addr"];
    size_t unit_bits =  data_.size();
    CHECK_EQ(unit_bits % 8U, 0)
        << "Read/write unit have to be multiple of 8 bit(bytes)";
    unit_bytes_ = unit_bits / 8U;
  }
  void* RealAddr() {
    int byte_offset = addr_.get_int() * unit_bytes_;
    void* ptr =
        device_->RealAddrSafe(
            reinterpret_cast<void*>(mmap_addr_.get_int() + byte_offset), 1);
    return ptr;
  }

 protected:
  // Device API
  VPIDeviceAPI* device_{nullptr};
  VPIHandle rst_;
  VPIHandle addr_;
  VPIHandle data_;
  VPIHandle mmap_addr_;
  size_t unit_bytes_;
  VPIVecBuffer vbuf_;
};

class VPIReadMemMap : public VPIMemMapBase {
 public:
  void Init(VPIHandle module) {
    VPIMemMapBase::Init(module, "reg_data");
  }
367
  void AtNegEdge() {
368 369 370 371 372 373 374 375 376 377 378 379 380 381
    void* ptr = RealAddr();
    if (ptr == nullptr) return;
    size_t nwords = (unit_bytes_ + 3) / 4;
    vbuf_.put_vec(data_, nwords, ptr, unit_bytes_);
  }
};

// Write only memory map.
class VPIWriteMemMap : public VPIMemMapBase {
 public:
  void Init(VPIHandle module) {
    VPIMemMapBase::Init(module, "data_in");
    enable_ = module["en"];
  }
382
  void AtNegEdge() {
383 384 385 386 387 388 389 390 391 392 393
    if (!enable_.get_int() || rst_.get_int()) return;
    void* ptr = RealAddr();
    CHECK(ptr != nullptr)
        << "Illegal write to VPI RAM";
    vbuf_.get_vec(data_, ptr, unit_bytes_);
  }

 private:
  VPIHandle enable_;
};

394
TVM_REGISTER_GLOBAL("device_api.vpi")
395 396 397 398 399 400 401 402 403 404 405 406
.set_body([](runtime::TVMArgs args, runtime::TVMRetValue* rv) {
    runtime::DeviceAPI* ptr = VPIDeviceAPI::Global();
    *rv = static_cast<void*>(ptr);
  });

template<typename T>
void TVMVPIHook(runtime::TVMArgs args, runtime::TVMRetValue* rv) {
  VPIHandle m = args[0];
  std::shared_ptr<T> p = std::make_shared<T>();
  p->Init(m);
  LOG(INFO) << "Hook " << m.name() << " to tvm vpi simulation...";
  PackedFunc pf([p](const runtime::TVMArgs&, runtime::TVMRetValue*) {
407
      p->AtNegEdge();
408 409 410 411
    });
  *rv = pf;
}

412
TVM_REGISTER_GLOBAL("_vpi_module_tvm_vpi_mem_interface")
413 414
.set_body(TVMVPIHook<VPIMemoryInterface>);

415
TVM_REGISTER_GLOBAL("_vpi_module_tvm_vpi_read_mmap")
416 417
.set_body(TVMVPIHook<VPIReadMemMap>);

418
TVM_REGISTER_GLOBAL("_vpi_module_tvm_vpi_write_mmap")
419 420 421 422
.set_body(TVMVPIHook<VPIWriteMemMap>);

}  // namespace codegen
}  // namespace tvm