requantize.cc 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 *  Copyright (c) 2019 by Contributors
22
 * \file src/relay/qnn/op/requantize.cc
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
 * \brief QNN requantize operator.
 */

#include <tvm/relay/analysis.h>
#include <tvm/relay/op_attr_types.h>
#include <tvm/relay/qnn/attrs.h>
#include "../../pass/pattern_util.h"
#include "../util.h"

namespace tvm {
namespace relay {
namespace qnn {

TVM_REGISTER_NODE_TYPE(RequantizeAttrs);

// Lowering of qnn.requantize op

/*
 * \brief Convert FP32 representation into fixed point representation.
 * \param double_multplier The input FP32 number.
 * \return The pair of multiplier and shift for fixed point representation.
 * \note Converts a floating point number so that it can be represented by
 *       integers. The representation is
 *             float_number = (significand) * 2^(exponent)
 *
 *       The significand is a number between 0.5 and 1. This is represented by
 *       an integer number. For example, if it is int32, then the decimal point
 *       exists between bit 31 and 30 from LSB (or between first and second bit
 *       from the left).
 *
 *       Some examples are
 *           0.25 = (0.5) * 2^(-1)
 *           0.125 = (0.5) * 2^(-2)
 *
 *       Credit to TFLite reference implementation.
 */
std::pair<int32_t, int32_t> GetFixedPointMultiplierShift(double double_multiplier) {
  int32_t significand, exponent;
  if (double_multiplier == 0.) {
    significand = 0;
    exponent = 0;
    return std::make_pair(significand, exponent);
  }

  // Get the significand and exponent.
  double significand_d = std::frexp(double_multiplier, &exponent);

  // Convert the double significand to int significand, i.e., convert into a
  // integer where the decimal point is between bit 31 and 30. This is done by
  // multiplying the double value with 2^31 and then casting to int.
  significand_d = std::round(significand_d * (1ll << 31));
  auto significand_int64 = static_cast<int64_t>(significand_d);
  CHECK_LE(significand_int64, (1ll << 31));
  if (significand_int64 == (1ll << 31)) {
    significand_int64 /= 2;
    ++exponent;
  }
  CHECK_LE(significand_int64, std::numeric_limits<int32_t>::max());
  significand = static_cast<int32_t>(significand_int64);
  return std::make_pair(significand, exponent);
}

/*
 * \brief Lower requantize to a sequence of ops.
 * \param input_tensor The input tensor to requantize op.
 * \param param The requantize op attrs.
 * \param input_shape The input tensor shape of the requantize op.
 * \return The sequence of existing Relay ops.
 * \note Requantization using only integer computation. Here, the computation is
 *       converted to a fixed point computation by computing output multiplier
 *       and shift. This is useful, if the target device does not support/have
 *       very expensive floating point computations.
 *
 *       Original compuation is scale_fp32 * quantized_tensor.  To convert into
 *       integer computation, the multiplication with fp32 scalar can be
 *       replaced by multiplication with an int value and then right shifting
 *       the result. This approximates the floating point computation with a
 *       fixed point computation.
 *
 *       The whole computation this can be broken down into following steps
 *       1) Calculate the integer multiplier and integer shift.
 *       2) Subtract the input integer zero point.
 *       3) Multiply the fixed point multiplier with quantized tensor.
 *       4) Round the result.
 *       5) Right shift the result.
 *       6) Add the output zero point.
 *       7) Cast to the out_dtype.
 */
Expr RequantizeLower(const Expr& input_tensor, const RequantizeAttrs* param,
                     const Array<IndexExpr>& input_shape) {
  double double_multiplier = param->input_scale / param->output_scale;

  // Choose high precision datatype to be int64. This is for avoiding overflow
  // in multiplication of two int32 values.
  DataType hp_dtype = Int(64);

  // 1) Calculating the integer multiplier and integer shift
  int32_t fixed_point_multiplier, shift;
  std::tie(fixed_point_multiplier, shift) = GetFixedPointMultiplierShift(double_multiplier);
  int left_shift = shift > 0 ? shift : 0;
  int right_shift = shift > 0 ? 0 : -shift;

  // 2) Subtract the input_zero_point
  auto tensor = Cast(input_tensor, hp_dtype);
  if (param->input_zero_point != 0) {
    auto input_zp = MakeConstantScalar(hp_dtype, param->input_zero_point);
    tensor = Subtract(tensor, input_zp);
  }

  // 3) Multiply the integer multiplier
  if (left_shift != 0) {
    tensor = Multiply(tensor, MakeConstantScalar(hp_dtype, 1 << left_shift));
  }
  // Perform the multiplication in higher precision.
  // The scalar is a fixed point value of int32 where the decimal point is
  // between bits 31 and 30. After multiplying with input_tensor, the result is
  // in int64 where the decimal point is sitting between bits 31 and 30 (from
  // the right, rightmost bit is bit 0). The computation is performed in higher
  // precision to avoid overflow in multiplying two int32 values.
  Expr scalar = MakeConstantScalar(hp_dtype, fixed_point_multiplier);
  auto multiplied_t = Multiply(tensor, scalar);

  // 4) Find the rounding scalar. This depends on where the final decimal point
  // sits. As we will be right shifting the multiplied_t, we need to first
  // calculate the total_right_shift.
  int total_right_shift = right_shift + 31;
  int64_t pos_rounding_value = (1ll << (total_right_shift - 1));

  tensor = multiplied_t;
  Expr round_scalar;
  if (param->rounding == "UPWARD") {
    round_scalar = MakeConstantScalar(hp_dtype, pos_rounding_value);
  } else if (param->rounding == "TONEAREST") {
    auto pos_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value);
    auto neg_rounder = MakeConstantScalar(hp_dtype, pos_rounding_value - 1);
    auto pos_rounder_t = Full(pos_rounder, input_shape, hp_dtype);
    auto neg_rounder_t = Full(neg_rounder, input_shape, hp_dtype);

    auto zero = MakeConstantScalar(hp_dtype, 0);
    auto zero_t = Full(zero, input_shape, hp_dtype);
    round_scalar = Where(GreaterEqual(tensor, zero_t), pos_rounder_t, neg_rounder_t);
  }
  // Add the rounding scalar.
  tensor = Add(tensor, round_scalar);

  // 5) Simply right shift the result to get the final output.
  auto scaled_int64_t = RightShift(tensor, MakeConstantScalar(hp_dtype, total_right_shift));

  // 6) Add the output zero point.
  auto output_zp = MakeConstantScalar(hp_dtype, param->output_zero_point);
  auto shifted_int64_t = Add(output_zp, scaled_int64_t);

  // 7) Clip to the out_dtype min/max.
  auto q_min = GetQmin(param->out_dtype);
  auto q_max = GetQmax(param->out_dtype);
  auto clipped_t = Clip(shifted_int64_t, q_min, q_max);
  return Cast(clipped_t, param->out_dtype);
}

/*
 * \brief Forward rewrite the requantize op.
 * \param ref_call The original call that will be lowered.
 * \param new_args The new mutated args to the call node.
 * \param ctx The node context.
 * \return The sequence of Relay ops for requantize op.
 * \note Lowering of the requantize operation. The requantize operator converts
 *       one quantized tensor to another quantized tensor. For the output
 *       tensor, we are provided with output scale and zero point. The
 *       computation looks like this
 *
 * Q_output = zp_output +  (scale_input)/(scale_ouptut) * (Q_input - zp_input)
 */
Expr RequantizeLegalize(const Attrs& attrs, const Array<Expr>& new_args,
                        const Array<tvm::relay::Type>& arg_types) {
  CHECK_EQ(new_args.size(), 1);
  auto& quantized_data = new_args[0];
  const auto* param = attrs.as<RequantizeAttrs>();
  CHECK(param != nullptr);

  // Find input shape.
  CHECK_EQ(arg_types.size(), 1);
  auto input_dtype = arg_types[0];
  auto input_tensor_type = input_dtype.as<TensorTypeNode>();
  CHECK(input_tensor_type != nullptr) << "Type information missing."
                                      << " Please run infer_type pass.";
  Array<IndexExpr> input_shape = input_tensor_type->shape;

  // Check rounding validity.
  CHECK(param->rounding == "UPWARD" || param->rounding == "TONEAREST")
      << "QNN requantize supports two rounding modes - UPWARD and "
      << "TONEAREST";
  return RequantizeLower(quantized_data, param, input_shape);
}

/*
 * \brief Infer shape function of Requantize op.
 * \param types The types of input args.
 * \param num_inputs The number of inputs.
 * \param attrs The op attributes.
 * \param reporter The type reporter that sets the dtype and shapes.
 * \return True if the infer shape succeeded.
 */
bool RequantizeRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
                   const TypeReporter& reporter) {
  CHECK_EQ(types.size(), 2);
  const auto* data = types[0].as<TensorTypeNode>();
  const auto in_dtype = data->dtype;
  CHECK(in_dtype == Int(8) || in_dtype == UInt(8) || in_dtype == Int(32))
231
      << "Input type should be one of [int8, uint8, int32] but was " << in_dtype;
232 233 234 235 236 237

  const Array<tvm::Expr> oshape = data->shape;
  // assign output type
  const RequantizeAttrs* param = attrs.as<RequantizeAttrs>();
  auto out_dtype = param->out_dtype;
  CHECK(out_dtype == Int(8) || out_dtype == UInt(8) || out_dtype == Int(32))
238
      << "Output type should be one of [int8, uint8, int32] but was " << out_dtype;
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  reporter->Assign(types[1], TensorTypeNode::make(oshape, out_dtype));
  return true;
}

// Positional relay function to create qnn requantize operator
// used by frontend FFI.
Expr MakeRequantize(Expr data, double input_scale, int32_t input_zero_point, double output_scale,
                    int32_t output_zero_point, std::string rounding, DataType out_dtype) {
  auto attrs = make_node<RequantizeAttrs>();
  attrs->input_scale = std::move(input_scale);
  attrs->input_zero_point = std::move(input_zero_point);
  attrs->output_scale = std::move(output_scale);
  attrs->output_zero_point = std::move(output_zero_point);
  attrs->rounding = std::move(rounding);
  attrs->out_dtype = std::move(out_dtype);
  static const Op& op = Op::Get("qnn.requantize");
  return CallNode::make(op, {data}, Attrs(attrs), {});
}

RELAY_REGISTER_OP("qnn.requantize")
.describe(R"code(Requantize operator.
The requantize operator converts one quantized tensor to another quantized
tensor. For the output tensor, we are provided with output scale and zero
point. The computation looks like this

Q_output = zp_output +  (scale_input)/(scale_ouptut) * (Q_input - zp_input)

)code" TVM_ADD_FILELINE)
.set_attrs_type_key("relay.attrs.RequantizeAttrs")
.set_num_inputs(1)
.add_argument("data", "Tensor", "The quantized input tensor.")
.set_support_level(11)
.add_type_rel("Requantize", RequantizeRel)
.set_attr<FTVMLegalize>("FTVMLegalize", RequantizeLegalize);

TVM_REGISTER_API("relay.qnn.op._make.requantize")
.set_body_typed(MakeRequantize);

}  // namespace qnn
}  // namespace relay
}  // namespace tvm