test_topi_sparse.py 8.41 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
"""Test code for sparse operator"""
import numpy as np
import tvm
import topi
import topi.testing
from topi.util import get_const_tuple
import tvm.contrib.sparse as tvmsp
from collections import namedtuple
import time

def verify_dynamic_csrmv(batch, in_dim, out_dim, use_bias=True):
    nr, nc, n = tvm.var("nr"), tvm.var("nc"), tvm.var("n")
    dtype = 'float32'
    A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, dtype=dtype, name='A')
    B = tvm.placeholder((in_dim, 1), name='B')
    C = tvm.placeholder((nr,), name='C')
    D = topi.sparse.csrmv(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)
    dtype = A.dtype

    # get the test data
    def get_ref_data():
        a_np = np.maximum(np.random.uniform(size=(batch, in_dim)).astype(dtype)-0.5, 0.)
        b_np = np.random.uniform(size=(in_dim, 1)).astype(dtype)-0.5
        c_np = np.random.uniform(size=(batch, )).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np) + c_np.reshape((batch, 1))
        else:
            d_np = np.dot(a_np, b_np)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvmsp.array(a_np, ctx)
        _nr, _nc, _n = a.shape[0], a.shape[1], a.data.shape[0]
        assert a.shape[0] == a.indptr.shape[0]-1
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros((_nr, 1), dtype=dtype), ctx)
        assert a.data.dtype == A.data.dtype
        assert a.indices.dtype == A.indices.dtype
        assert a.indptr.dtype == A.indptr.dtype
        f = tvm.build(s, [nr, A.data, A.indices, A.indptr, B, C, D], device, name="csrmv")
        f(_nr, a.data, a.indices, a.indptr, b, c, d)
50
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    for device in ["llvm"]:
        check_device(device)

def verify_dynamic_csrmm(batch, in_dim, out_dim, use_bias=True):
    nr, nc, n = tvm.var("nr"), tvm.var("nc"), tvm.var("n")
    dtype = 'float32'
    A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, dtype=dtype, name='A')
    B = tvm.placeholder((in_dim, out_dim), name='B')
    C = tvm.placeholder((nr,), name='C')
    D = topi.sparse.csrmm(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)
    dtype = A.dtype

    # get the test data
    def get_ref_data():
        a_np = np.maximum(np.random.uniform(size=(batch, in_dim)).astype(dtype)-0.5, 0.)
        b_np = np.random.uniform(size=(in_dim, out_dim)).astype(dtype)-0.5
        c_np = np.random.uniform(size=(batch, )).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np) + c_np.reshape((batch, 1))
        else:
            d_np = np.dot(a_np, b_np)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvmsp.array(a_np, ctx)
        _nr, _nc, _n = a.shape[0], a.shape[1], a.data.shape[0]
        assert a.shape[0] == a.indptr.shape[0]-1
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros((_nr, out_dim), dtype=dtype), ctx)
        f = tvm.build(s, [nr, A.data, A.indices, A.indptr, B, C, D], device, name="csrmm")

        f(_nr, a.data, a.indices, a.indptr, b, c, d)
92
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-2, atol=1e-2)
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    for device in ["llvm"]:
        check_device(device)

def verify_dense_si(batch, in_dim, out_dim, use_bias=True, dtype='float32'):
    nonzeros = tvm.var('nonzeros')
    A = tvmsp.placeholder(shape=(batch, in_dim), nonzeros=nonzeros, dtype=dtype, name='A')
    B = tvm.placeholder((out_dim, in_dim), dtype=dtype, name='B')
    C = tvm.placeholder((out_dim,), dtype=dtype, name='C')
    D = topi.sparse.dense(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)

    # get the test data
    def get_ref_data():
        mag = 10.
        a_np = np.maximum(mag*(np.random.uniform(size=(batch, in_dim)).astype('float32')-0.5), 0.).astype(dtype)
        b_np = (mag*(np.random.uniform(size=(out_dim, in_dim)).astype('float32')-.5)).astype(dtype)
        c_np = (mag*(np.random.uniform(size=(out_dim,)).astype('float32')-.5)).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np.T) + c_np
        else:
            d_np = np.dot(a_np, b_np.T)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvmsp.array(a_np, ctx)
        b = tvm.nd.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros(get_const_tuple(D.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A.data, A.indices, A.indptr, B, C, D], device, name="dense")
        f(a.data, a.indices, a.indptr, b, c, d)
130
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

    check_device('llvm')

def verify_dense_sw(batch, in_dim, out_dim, use_bias=True, dtype='float32'):
    nonzeros = tvm.var('nonzeros')
    A = tvm.placeholder((batch, in_dim), dtype=dtype, name='A')
    B = tvmsp.placeholder(shape=(out_dim, in_dim), nonzeros=nonzeros, dtype=dtype, name='B')
    C = tvm.placeholder((out_dim,), dtype=dtype, name='C')
    D = topi.sparse.dense(A, B, C if use_bias else None)
    s = tvm.create_schedule(D.op)

    # get the test data
    def get_ref_data():
        mag = 10.
        a_np = (mag*(np.random.uniform(size=(batch, in_dim)).astype('float32')-.5)).astype(dtype)
        b_np = np.maximum(mag*(np.random.uniform(size=(out_dim, in_dim)).astype('float32')-0.5), 0.).astype(dtype)
        c_np = (mag*(np.random.uniform(size=(out_dim,)).astype('float32')-.5)).astype(dtype)
        if use_bias:
            d_np = np.dot(a_np, b_np.T) + c_np
        else:
            d_np = np.dot(a_np, b_np.T)
        return (a_np, b_np, c_np, d_np)
    a_np, b_np, c_np, d_np = get_ref_data()

    def check_device(device):
        ctx = tvm.context(device, 0)
        if not ctx.exist:
            print("Skip because %s is not enabled" % device)
            return
        print("Running on target: %s" % device)
        a = tvm.nd.array(a_np, ctx)
        b = tvmsp.array(b_np, ctx)
        c = tvm.nd.array(c_np, ctx)
        d = tvm.nd.array(np.zeros(get_const_tuple(D.shape), dtype=dtype), ctx)
        f = tvm.build(s, [A, B.data, B.indices, B.indptr, C, D], device, name="dense")
        f(a, b.data, b.indices, b.indptr, c, d)
167
        tvm.testing.assert_allclose(d.asnumpy(), d_np, rtol=1e-4, atol=1e-4)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

    check_device('llvm')

def test_csrmv():
    verify_dynamic_csrmv(batch=5, in_dim=7, out_dim=1, use_bias=False)
    verify_dynamic_csrmv(batch=5, in_dim=7, out_dim=1, use_bias=True)

def test_csrmm():
    M, K, N = 5, 7, 2
    verify_dynamic_csrmm(batch=M, in_dim=K, out_dim=N, use_bias=False)
    verify_dynamic_csrmm(batch=M, in_dim=K, out_dim=N, use_bias=True)

def test_dense_si():
    M, K, N = 3, 5, 2
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='float32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='float32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int32')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int16')
    verify_dense_si(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int16')

def test_dense_sw():
    M, K, N = 3, 5, 2
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='float32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='float32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int32')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=False, dtype='int16')
    verify_dense_sw(batch=M, in_dim=K, out_dim=N, use_bias=True, dtype='int16')

def test_dense():
    test_dense_si()
    test_dense_sw()

if __name__ == "__main__":
    test_csrmv()
    test_csrmm()
    test_dense()