test_conv_int8_intel.py 6.77 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#pylint: disable-msg=too-many-arguments, too-many-locals, assignment-from-no-return
""" Conv Int8 functional and performance testing"""
import sys
import logging
import numpy as np
import tvm
import topi

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
LOGGER = logging.getLogger('test_conv_int8_intel')
LOGGER.disabled = False

# All the WORKLOADS from Resnet except first layer
# Workload is ['height', 'width', 'in_filter', 'out_filter',
#              'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])
WORKLOADS = [(56, 56, 64, 64, 3, 3, 1, 1, 1, 1),
             (56, 56, 64, 64, 1, 1, 0, 0, 1, 1),
             (56, 56, 64, 128, 3, 3, 1, 1, 2, 2),
             (56, 56, 64, 128, 1, 1, 0, 0, 2, 2),
             (28, 28, 128, 128, 3, 3, 1, 1, 1, 1),
             (28, 28, 128, 256, 3, 3, 1, 1, 2, 2),
             (28, 28, 128, 256, 1, 1, 0, 0, 2, 2),
             (14, 14, 256, 256, 3, 3, 1, 1, 1, 1),
             (14, 14, 256, 512, 3, 3, 1, 1, 2, 2),
             (14, 14, 256, 512, 1, 1, 0, 0, 2, 2),
             (7, 7, 512, 512, 3, 3, 1, 1, 1, 1),
             (56, 56, 64, 256, 1, 1, 0, 0, 1, 1),
             (56, 56, 256, 64, 1, 1, 0, 0, 1, 1),
             (56, 56, 256, 128, 1, 1, 0, 0, 2, 2),
             (28, 28, 128, 512, 1, 1, 0, 0, 1, 1),
             (56, 56, 256, 512, 1, 1, 0, 0, 2, 2),
             (28, 28, 512, 128, 1, 1, 0, 0, 1, 1),
             (28, 28, 512, 256, 1, 1, 0, 0, 2, 2),
             (14, 14, 256, 1024, 1, 1, 0, 0, 1, 1),
             (28, 28, 512, 1024, 1, 1, 0, 0, 2, 2),
             (14, 14, 1024, 256, 1, 1, 0, 0, 1, 1),
             (14, 14, 1024, 512, 1, 1, 0, 0, 2, 2),
             (7, 7, 512, 2048, 1, 1, 0, 0, 1, 1),
             (14, 14, 1024, 2048, 1, 1, 0, 0, 2, 2),
             (7, 7, 2048, 512, 1, 1, 0, 0, 1, 1)
            ]


TARGET_NAME = 'llvm -mcpu=skylake-avx512'
NUM_VEC_LANES = 16
CTX = tvm.context(TARGET_NAME, 0)

def get_shape(im_height, im_width, in_filter, out_filter, k_h, k_w, hpad, wpad,
              hstride, wstride, out_dtype):
    """
    Finds out the shape of all data structures
    """
    ## Find shapes
    data_shape = (1, in_filter//NUM_VEC_LANES, im_height, im_width, NUM_VEC_LANES)

    if out_dtype == 'int32':
73 74
        kernel_shape = (out_filter//NUM_VEC_LANES, in_filter//NUM_VEC_LANES, k_h, k_w,
                        NUM_VEC_LANES//4, NUM_VEC_LANES, 4)
75
    elif out_dtype == 'float32':
76 77
        kernel_shape = (out_filter//NUM_VEC_LANES, in_filter//NUM_VEC_LANES, k_h, k_w,
                        NUM_VEC_LANES, NUM_VEC_LANES)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    out_height = (im_height + 2 * hpad - k_h) // hstride + 1
    out_width = (im_width + 2 * wpad - k_w) // wstride + 1
    o_shape = (1, out_filter//NUM_VEC_LANES, out_height, out_width, NUM_VEC_LANES)
    return (data_shape, kernel_shape, o_shape)



def run_inference(data_dtype, kernel_dtype, out_dtype, im_height, im_width, in_filter,
                  out_filter, k_h, k_w, hpad, wpad, hstride, wstride):
    """
    Runs the inference and checks the functional correctness between
    compute and schedule outputs
    """
    (data_shape, kernel_shape, o_shape) = get_shape(im_height, im_width, in_filter,
                                                    out_filter, k_h, k_w, hpad, wpad,
                                                    hstride, wstride, out_dtype)

    # Create TVM placeholders
    data = tvm.placeholder(data_shape, name='data', dtype=data_dtype)
    kernel = tvm.placeholder(kernel_shape, name='kernel', dtype=kernel_dtype)

    # Create the numpy arrays to be used for executing conv models
    if data_dtype == 'float32':
        data_array = tvm.nd.array(np.random.rand(*data_shape).astype(dtype=data_dtype), CTX)
        kernel_array = tvm.nd.array(np.random.rand(*kernel_shape).astype(dtype=kernel_dtype), CTX)
    else:
        data_array = tvm.nd.array(np.random.randint(100, size=data_shape).astype(data_dtype))
        kernel_array = tvm.nd.array(np.random.randint(100, size=kernel_shape).astype(kernel_dtype))

    # c_orig will be used for declaration ouptut
    # c_sch will be used for scheduled computation output
    c_orig = tvm.nd.array(np.zeros(o_shape, dtype=out_dtype), CTX)
    c_sch = tvm.nd.array(np.zeros(o_shape, dtype=out_dtype), CTX)


    with tvm.target.create(TARGET_NAME):
114
        conv = topi.nn.conv2d_NCHWc(data, kernel, stride=hstride,
115 116
                                    padding=hpad, dilation=(1, 1),
                                    layout='NCHWc', out_layout='NCHWc', out_dtype=out_dtype)
117 118 119 120 121 122 123
        out = topi.nn.relu(conv)
        sch = tvm.create_schedule(out.op)
        func = tvm.build(sch, [data, kernel, out], target=TARGET_NAME, name='out')
        func(data_array, kernel_array, c_orig)
        LOGGER.debug(tvm.lower(sch, [data, kernel], simple_mode=True))

        # Generate and run the optimized schedule
124
        sconv = topi.generic.nn.schedule_conv2d_NCHWc(outs=[out])
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        func = tvm.build(sconv, [data, kernel, out], target=TARGET_NAME, name='conv')
        func(data_array, kernel_array, c_sch)

        # Functional check
        if data_dtype == 'uint8':
            np.testing.assert_equal(c_orig.asnumpy(), c_sch.asnumpy())
        else:
            assert np.allclose(c_orig.asnumpy(), c_sch.asnumpy())

        evaluator = func.time_evaluator(func.entry_name, CTX, number=1000)
        LOGGER.debug(tvm.lower(sconv, [data, kernel], simple_mode=True))
        return evaluator(data_array, kernel_array, c_sch).mean

if __name__ == "__main__":
    LOGGER.info("Workload, Kernel_size, FP32_time, INT8_time, Speedup")
    SPEEDUP_ARRAY = []
    for i, wkl in enumerate(WORKLOADS):
        fp32_time = run_inference('float32', 'float32', 'float32', *wkl)
        int8_time = run_inference('uint8', 'int8', 'int32', *wkl)
        kernel_h = wkl[4]
        kernel_w = wkl[5]
        LOGGER.info("Workload#" + str(i) + ", " + str(kernel_h) + "x" + str(kernel_w) + ", "
                    + str(fp32_time) + ", " + str(int8_time) + ", " + str(fp32_time/int8_time))

        SPEEDUP_ARRAY.append(fp32_time/int8_time)
    LOGGER.info("Average speedup --> %s" % str(sum(SPEEDUP_ARRAY)/float(len(SPEEDUP_ARRAY))))