test_pass_combine_parallel_dense.py 6.97 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from tvm import relay
from tvm.relay import transform


def run_combine_parallel(expr, min_num_branches=3):
    mod = relay.Module.from_expr(expr)
    mod = transform.CombineParallelDense(min_num_branches)(mod)
    return mod["main"]

def run_opt_pass(expr, opt_pass):
    assert isinstance(opt_pass, transform.Pass)
    mod = relay.Module.from_expr(expr)
    mod = opt_pass(mod)
    return mod["main"]


def test_combine_parallel_dense():
    """Simple testcase. One dense cannot be combined due to shape mismatch"""
    def before(x, w1, w2, w3, w4):
        args = [x, w1, w2, w3, w4]
        y1 = relay.nn.dense(x, w1)
        y2 = relay.nn.dense(x, w2)

        # y3 cannot be combined
        y3 = relay.nn.dense(x, w3)

        y4 = relay.nn.dense(x, w4)
        y = relay.Tuple((y1, y2, y3, y4))
        return relay.Function(args, y)

    def expected(x, w1, w2, w3, w4):
        # use a fixed order of args so alpha equal check can pass
        args = [x, w1, w2, w3, w4]
        x_stacked = relay.stack((x, x, x), axis=0)
        w = relay.stack((w1, w2, w4), axis=0)
        y = relay.nn.batch_matmul(x_stacked, w)
        (y1, y2, y4) = relay.split(y, 3)
        y1 = relay.squeeze(y1, [0])
        y2 = relay.squeeze(y2, [0])
        y4 = relay.squeeze(y4, [0])

        # y3 cannot be combined
        y3 = relay.nn.dense(x, w3)

        y = relay.Tuple((y1, y2, y3, y4))
        return relay.Function(args, y)

    def check(i, j, k):
        x =  relay.var("x", shape=(i, k))
        w1 = relay.var("w1", shape=(j, k))
        w2 = relay.var("w2", shape=(j, k))
        w3 = relay.var("w3", shape=(j + 1, k))
        w4 = relay.var("w4", shape=(j, k))

        y_before = before(x, w1, w2, w3, w4)
        y = run_opt_pass(y_before,
                         transform.CombineParallelDense(min_num_branches=2))
        y_expected = expected(x, w1, w2, w3, w4)
        y_expected = run_opt_pass(y_expected, transform.InferType())
        assert relay.analysis.alpha_equal(y, y_expected)

    check(3, 5, 4)
    check(100, 200, 300)


def test_combine_parallel_dense_biasadd():
    """Testcase of combining dense + 1d biasadd"""
    def before(x, w1, w2, b1, b2):
        args = [x, w1, w2, b1, b2]
        y1 = relay.nn.dense(x, w1)
        y2 = relay.nn.dense(x, w2)
        y1 = relay.add(y1, b1)
        y2 = relay.add(y2, b2)
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def expected(x, w1, w2, b1, b2, is_2d_bias):
        args = [x, w1, w2, b1, b2]
        x_stacked = relay.stack((x, x), axis=0)
        w = relay.stack((w1, w2), axis=0)
        y = relay.nn.batch_matmul(x_stacked, w)

        if not is_2d_bias:
            b1 = relay.expand_dims(b1, 0)
            b2 = relay.expand_dims(b2, 0)

        b = relay.stack((b1, b2), axis=0)
        y = relay.add(y, b)
        (y1, y2) = relay.split(y, 2)
        y1 = relay.squeeze(y1, [0])
        y2 = relay.squeeze(y2, [0])
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def check(i, j, k, is_2d_bias):
        x =  relay.var("x", shape=(i, k))
        w1 = relay.var("w1", shape=(j, k))
        w2 = relay.var("w2", shape=(j, k))

        if is_2d_bias:
            b1 = relay.var("b1", shape=(i, j))
            b2 = relay.var("b2", shape=(i, j))
        else:
            b1 = relay.var("b1", shape=(j,))
            b2 = relay.var("b2", shape=(j,))

        y_before = before(x, w1, w2, b1, b2)
        y = run_opt_pass(y_before,
                         transform.CombineParallelDense(min_num_branches=2))
        y_expected = expected(x, w1, w2, b1, b2, is_2d_bias)
        y_expected = run_opt_pass(y_expected, transform.InferType())
        assert relay.analysis.alpha_equal(y, y_expected)

    check(3, 5, 4, False)
    check(100, 200, 300, False)
    check(3, 5, 4, True)
    check(100, 200, 300, True)

def test_combine_parallel_dense_biasadd_scale_reshape():
    """Testcase of combining dense + 1d biasadd + multiply with non-fused reshape"""
    def before(x, w1, w2, b1, b2, scale1, scale2, newshape):
        args = [x, w1, w2, b1, b2, scale1, scale2]
        y1 = relay.nn.dense(x, w1)
        y2 = relay.nn.dense(x, w2)
        y1 = relay.add(y1, b1)
        y2 = relay.add(y2, b2)
        y1 = relay.multiply(y1, scale1)
        y2 = relay.multiply(y2, scale2)
        y1 = relay.reshape(y1, newshape=newshape)
        y2 = relay.reshape(y2, newshape=newshape)
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def expected(x, w1, w2, b1, b2, scale1, scale2, newshape):
        args = [x, w1, w2, b1, b2, scale1, scale2]
        x_stacked = relay.stack((x, x), axis=0)
        w = relay.stack((w1, w2), axis=0)
        y = relay.nn.batch_matmul(x_stacked, w)
        b1 = relay.expand_dims(b1, 0)
        b2 = relay.expand_dims(b2, 0)
        b = relay.stack((b1, b2), axis=0)
        y = relay.add(y, b)
        scale1 = relay.expand_dims(scale1, 0)
        scale2 = relay.expand_dims(scale2, 0)
        scale = relay.stack((scale1, scale2), axis=0)
        y = relay.multiply(y, scale)
        (y1, y2) = relay.split(y, 2)
        y1 = relay.squeeze(y1, [0])
        y2 = relay.squeeze(y2, [0])
        y1 = relay.reshape(y1, newshape=newshape)
        y2 = relay.reshape(y2, newshape=newshape)
        y = relay.Tuple((y1, y2))
        return relay.Function(args, y)

    def check(i, j, k, scale1, scale2, newshape):
        x =  relay.var("x", shape=(i, k))
        w1 = relay.var("w1", shape=(j, k))
        w2 = relay.var("w2", shape=(j, k))
        b1 = relay.var("b1", shape=(j,))
        b2 = relay.var("b2", shape=(j,))
        scale1 = relay.var("scale1", shape=(1,))
        scale2 = relay.var("scale2", shape=(1,))

        y_before = before(x, w1, w2, b1, b2, scale1, scale2, newshape)
        y = run_opt_pass(y_before,
                         transform.CombineParallelDense(min_num_branches=2))
        y_expected = expected(x, w1, w2, b1, b2, scale1, scale2, newshape)
        y_expected = run_opt_pass(y_expected, transform.InferType())
        assert relay.analysis.alpha_equal(y, y_expected)

    check(3, 5, 4, 0.5, 0.25, (1, 1, 15))
    check(100, 200, 300, 0.5, 0.25, (1, 1, 200))


if __name__ == "__main__":
    test_combine_parallel_dense()
    test_combine_parallel_dense_biasadd()
    test_combine_parallel_dense_biasadd_scale_reshape()